A NEW STRATEGY OF LEARNING CALCULATING SKILLS

Discovery of a New Number System: Bi-Quartet Number System and its Applications.

Ningmareo Shimray M.Sc/MA, B.Ed Lecturer,
Ukhrul Higher Secondary School, Ukhrul, Manipur, India. Recipient of National Awards to Teachers 2021

A NEW STRATEGY OF LEARNING CALCULATING SKILLS

INTRODUCTION

Many people find mathematics difficult and boring. We have to overcome this serious problem, for everything around us contains mathematics and therefore it is called "the queen of the sciences." This article aspires on training students to write well (both Arabic numerals and alphabet), write fast and calculate fast. Calculating fast is more than just writing fast but to calculate fast one has to be able to write fast (enclosed herewith practice formats to write both Arabic numerals and alphabet well and fast in Annexue-1\&2).

I have recently discovered a new number system, BI-QUARTET NUMBER SYSTEM, which enhances the speed of calculation and also highly simplifies the calculating process of all the existing operations: addition, subtraction, multiplication and division. The discovery of the new number system is nothing short of major breakthrough in learning of mathematics. This article will enlighten and assist slow learners in overcoming many hurdles and greatly enhance fast learners' performance. Mathematics is a number game involving symbols and figures and that the students can only learn mathematics efficiently by performing activities. The most effective way of learning mathematics is to apply both head and heart simultaneously. To apply head means to use up to one's best ability and not just give up when stuck somewhere. To apply heart means to have willingness to learn new things sincerely. The unique technique of learning calculating skills in this article is that the students attempt the practice formats and check their performance themselves from the article itself instead of depending on anyone else.
The article focuses on training the students of all standards in the following areas by applying the new number system: 1. Addition, 2.Times tables up to 9 digits. 3. Multiplication.4, Subtraction. 5. Division. 6. Identification of prime numbers between 1 and 100.7. Test of divisibility by prime numbers between 1 and 100 .

This write-up is an extract of the book: New Strategy of Teaching and Learning Mathematics for Standard I to XII (with the discovery of new number system: BI-QUARTET NUMBER SYSTEM and its applications) which is about to be published shortly. Hoping that the write-up will serve as an introduction to the upcoming book to all the readers and as an experimentation to find the effectiveness of the book.

DISCOVERY OF BI-QUARTET NUMBER SYSTEM.

Brief Background.

In 2018, I applied the New Strategy: Teaching and Learning of Mathematics in standard V, VIII and X. The strategy was a paradigm shift: from teaching the students how the mathematical problems are solved to teaching the students how the mathematical problems can be solved by themselves. The outcome of the application of the new strategy was phenomenal which inspired me to bring out my work into book form. In fact, the strategy was an effort to materialize the application of constructivist approach in learning of mathematics as per NCF 2005. In this strategy, firstly, the students are taught to write well (both Arabic numerals and alphabet), write fast, calculate fast and basics of mathematics (according to the standard of the students, before lesson's transaction) and then only after that the teachers start lesson's transaction in such a way that the students can solve mathematical problems by themselves.

From the beginning of 2019, I went through and analysed all the mathematics text books of standard I to X and then interacted with the students of my school and other private schools.

I identified their various hurdles in learning of mathematics. I could identify many hurdles only in the slow learners. Then, I started developing many techniques so that the slow learners could overcome their hurdles or are at least enlightened and the performance of the fast learners is enhanced. All those techniques, I developed, ultimately resulted in the discovery of the new number system.

BI-QUARTET NUMBER SYSTEM

Statement: The operation of Addition, Subtraction, Multiplication and Division obeys the rule of adding $1,2,3,4$ and subtracting $1,2,3,4$. In the process of addition, instead of adding $9,8,7,6$ to a number, subtract $1,2,3,4$ respectively from the number to get the sum. In the process of subtraction, instead of subtracting $9,8,7,6$ from a number, add $1,2,3,4$ respectively to the number to get the difference.

Symbolically,

+9
+8
+7
:---
+6
-
-7
-6

Note; (i) In the new number system, out of ten single digits; $0,1,2,3,4,5,6,7,8,9$ only four digits; $1,2,3,4$ are taken into consideration in the calculating process of all the operations; addition, subtraction, multiplication and division.
(ii) In the new number system, the digits; $0,5,6,7,8,9$ can be expressed in terms of the digits;
$1,2,3,4$. Verification: $0=1-1=2-2=3-3=4-4,5=1+4=2+3,6=1+2+3=2+4$,
$7=1+2+4=3+4,8=1+3+4,9=2+3+4$.
(iii) Conversion numbers to Bi-Quartet number system.

Examples:
a) $456=(4)(1+4)(2+4)$
b) $738=(3+4)(3)(1+3+4)$
c) $567890=(1+4)(2+4)(3+4)(1+3+4)(2+3+4)(1-1)$
d) $6712=(2+4)(3+4)(1)(2)$
(iv) Conversion to Bi-Quartet number system and addition.

Illustrations.
a) $9+6=(2+3+4)+(2+4)=(1)(1+4)=15$
b) $9+7=(2+3+4)+(3+4)=(1)(2+4)=16$
c) $9+17=(2+3+4)+(1)(3+4)=(2)(2+4)=26$
d) $29+6=(2)(2+3+4)+(2+4)=(3)(1+4)=35$
e) $38+54=(3)(1+3+4)+(1+4)(4)=(2+3+4)(2)=92$
f) $624+537=(2+4)$
$(2)(4)+(1+4)$
$(3)(3+4)=(1)(1)(2+4)(1)=1161$
g) $618+973=(2+4)(1)(1+3+4)+(2+3+4)(3+4)(3)=(1)(1+4)(2+3+4)(1)=1591$
h) $765+789=(3+4)(2+4)(1+4)+(3+4)(1+3+4)(2+3+4)=(1)(1+4)(1+4)(4)=1554$
i) $7654+4567=(3+4)(2+4)(1+4)(4)+(4)(1+4)(2+4)(3+4)=(1)(2)(2)(2)(1)=12221$
j) $5678+7890=(1+4)(2+4)(3+4)(1+3+4)+(3+4)(1+3+4)(2+3+4)(1-1)$

$$
=(1)(3)(1+4)(2+4)(1+3+4)=13568
$$

k) $12+34+56=(1)(2)+(3)(4)+(1+4)(2+4)=(1)(1-1)(2)=102$

1) $45+67+89=(4)(1+4)+(2+4)(3+4)+(1+3+4)(2+3+4)=(2)(1-1)(1)=201$
(v) Conversion to $\mathrm{Bi}-\mathrm{Quartet}$ number system and subtraction.

Illustrations:
a) $17-9=(1)(3+4)-(2+3+4)=(1+3+4)=8$
b) $16-8=(1)(2+4)-(1+3+4)=(1+3+4)=8$
c) $15-7=(1)(1+4)-(3+4)=(1+3+4)=8$
d) $14-6=(1)(4)-(2+4)=(1+3+4)=8$
e) $27-9=(2)(3+4)-(2+3+4)=(1)(2+3+4)=18$
f) $76-9=(3+4)(2+4)-(2+3+4)=(2+4)(3+4)=67$
g) $43-24=(4)(3)-(2)(4)=(1)(2+3+4)=19$
h) $56-38=(1+4)(2+4)-(3)(1+3+4)=(1)(1+3+4)=18$
i) $76-58=(3+4)(2+4)-(1+4)(1+3+4)=(1)(1+3+4)=18$
k) $72-64=(3+4)(2)-(2+4)(4)=(1)(1+3+4)=8$

1) $654-578=(2+4)(1+4)(4)-(1+4)(3+4)(1+3+4)=(3+4)(2+4)=76$
m) $978-897=(2+3+4)(3+4)(1+3+4)-(1+3+4)(2+3+4)(3+4)=(1+3+4)(1)=81$
n) $4234-2345=(4)(2)(3)(4)-(2)(3)(4)(1+4)=(1)(1+3+4)(1+3+4)(2+3+4)=1889$
o) $8765-5678=(1+3+4)(3+4)(2+4)(1+4)-(1+4)(2+4)(3+4)(1+3+4)=$ (3) $(1-1)(1+3+4)(3+4)=3087$
p) $67890-45678=(2+4)(3+4)(1+3+4)(2+3+4)(1-1)-(4)(1+4)(2+4)(3+4)(1+3+4)$

$$
=(2)(2)(2)(1)(2)=22212
$$

(vi) The above exercises (iv) and (v) will enhance the skills of actual addition, subtraction, multiplication and division.
(vii) Conversion to the new number system and multiplication.

Illustrations:
(a) $6 \times 8=(2+4) \times(1+3+4)=(2) \times(1+3+4)+(4) \times(1+3+4)=(1)(2+4)+(3)(2)$

$$
=(4)(1+3+4)=48
$$

(b) $16 \times 8=(1)(2+4) \times(1+3+4)=(1)(2+4) \times(1)+(1)(2+4) \times(3)+(1)(1+3+4) \times(4)$

$$
=(1)(2+4)+(4)(1+3+4)+(2+4)(4)=(1)(2)(1+3+4)=128
$$

(c) $26 \times 5=(2)(2+4) \times(1+4)=(2)(2+4) \times(1)+(2)(2+4) \times(4)$

$$
=(2)(2+4)+(1)(1-1)(4)=(1)(3)(1-1)=130
$$

d) $27 \times 8=(2)(3+4) \times(1+3+4)=(2)(3+4) \times(1)+(2)(3+4) \times(3)+(2)(3+4) \times(4)$

$$
=(2)(3+4)+(1+3+4)(1)+(1)(1-1)(1+3+4)=(2)(1)(2+4)=216
$$

(e) $75 \times 4=(3+4)(1+4) \times(4)=(3)(1-1)(1-1)=300$
(f) $23 \times 34=23 \times 30+23 \times 4=(2)(3) \times(3)(1-1)+(2)(3) \times(4)$

$$
=(2+4)(2+3+4)(1-1)+(2+3+4)(2)=(3+4)(1+3+4)(2)=782
$$

$(\mathrm{g}) 67 \times 89=67 \times 80+67 \times 9=(2+4)(3+4) \times(1+3+4)(1-1)+(2+4)(3+4) \times(2+3+4)$

$$
=(1+4)(3)(2+4)(1-1)+(2+4)((1-1)(3)=(1+4)(2+3+4)(2+4)(3)=5963
$$

(h) $123 \times 45=123 \times 40+123 \times 5=(1)(2)(3) \times(4)(1-1)+(1)(2)(3) \times(1+4)$

$$
=(4)(2+3+4)(2)(1-1)+(2+4)(1)(1+4)=(1+4)(1+4)(3)(1+4)=5535
$$

(i) $567 \times 89=567 \times 80+567 \times 9=(1+4)(2+4)(3+4) \times(1+3+4)(1-1)+(1+4)(2+4)(3+4)$

$$
=(4)(1+4)(3)(2+4)(1-1)+(1+4)(1)(1-1)(3)=(1+4)(1-1)(4)(2+4)(3)=50463
$$

(j) $123 \times 456=123 \times 400+123 \times 50+123 \times 6$

$$
\begin{aligned}
& =(1)(2)(3) \times(4)(1-1)(1-1)+(1)(2)(3) \times(1+4)(1-1)+(1)(2)(3) \times(2+4) \\
& =(4)(2+3+4)(2)(1-1)(1-1)+(2+4)(1)(1+4)(1-1)+(3+4)(3)(1+3+4) \\
& =(1+4)(2+4)(1-1)(1+3+4)(1+3+4)=56088
\end{aligned}
$$

(k) $987 \times 654=987 \times 600+987 \times 50+987 \times 4$

$$
\begin{aligned}
= & (2+3+4)(1+3+4) \times(2+4)(1-1)(1-1)+(2+3+4)(1+3+4) \times(1+4)(1-1) \\
& +(2+3+4)(1+3+4)(4)=(1+4)(2+3+4)(2)(2)(1-1)(1-1) \\
& +(4)(1+3+4)(3)(1+4)(1-1)+(3)(2+3+4)(4)(1+3+4) \\
= & (2+4)(4)(1+4)(4)(2+3+4)(1+3+4)=645498
\end{aligned}
$$

(a) $16 \div 2=(1)(2+4) \div(2)=(1+3+4)=8$
(b) $28 \div 2=(2)(1+3+4) \div(2)=(1)(4)=14$
(c) $12 \div 3=(1)(2) \div(3)=(4)=4$
(d) $78 \div 3=(3+4)(1+3+4) \div(3)=(2)(2+4)=26$
(e) $264 \div 4=(2)(2+4)(4) \div(4)=(2+4)(2+4)=66$
(f) $765 \div 5=(3+4)(2+4)(1+4) \div(1+4)=(1)(1+4)(3)=153$
(g) $24 \div 6=(2)(4) \div(2+4)=(4)=4$
(h) $6888 \div 6=(2+4)(1+3+4)(1+3+4)(1+3+4) \div(2+4)=(1)(1)(3)(1+3+4)=1148$
(i) $8886 \div 6=(1+3+4)(1+3+4)(1+3+4)(2+4) \div(2+4)=(1)(1+4)(1+3+4)(1)=1481$
(j) $8449 \div 7=(1+3+4)(4)(4)(2+3+4) \div(3+4)=((1)(2)(1-1)(3+4)=1207$
(k) $72 \div 8=(3+4)(2) \div(1+3+4)=(2+3+4)=9$
(1) $6448 \div 8=(2+4)(4)(4)(1+3+4) \div(1+3+4)=(1+3+4)(1-1)(2+4)=806$
(m) $234 \div 9=(2)(3)(4) \div(2+3+4)=(2)(2+4)=26$
(n) $6786 \div 9=(2+4)(3+4)(1+3+4)(2+4) \div(2+3+4)=(3+4)(1+4)(4)=754$
(o) $363 \div 11=(3)(2+4)(3) \div(1)(1)=(3)(3)=33$
$(\mathrm{p}) 7436 \div 11=(3+4)(4)(3)(2+4) \div(1)(1)=(2+4)(3+4)(2+4)=676$
(q) $168 \div 12=(1)(2+4)(1+3+4) \div(1)(2)=(1)(4)=14$
(r) $6888 \div 12=(2+4)(1+3+4)(1+3+4)(1+3+4) \div(1)(2)=(1+4)(3+4)(4)=574$
(s) $115 \div 23=(1)(1)(1+4) \div(2)(3)=(1+4)=5$
$(\mathrm{t}) 175 \div 35=(1)(3+4)(1+4) \div(3)(1+4)=(1+4)=5$
$(\mathrm{u}) 94141 \div 47=(2+3+4)(4)(1)(4)(1) \div(4)(3+4)=(2)(1-1)(1-1)(3)=2003$
(v) $464 \div 58=(4)(2+4)(4) \div(1+4)(1+3+4)=(1+3+4)=8$
$($ w) $603 \div 67=(2+4)(1-1)(3) \div(2+4)(3+4)=(2+3+4)=9$
$(x) 444 \div 74=(4)(4)(4) \div(3+4)(4)=(2+4)=6$
(y) $581 \div 83=(1+4)(1+3+4)(1) \div(1+3+4)(3)=(3+4)=7$
$(\mathrm{z}) 736 \div 92=(3+4)(3)(2+4) \div(2+3+4)(2)=(1+3+4)=8$
(ix) Simplification

Find the value of $9-99+999-9999+99999-999999+9999999-99999999+999999999$
Sol: $9-99+999-9999+99999-999999+9999999-99999999+999999999$
$=(9+999+99999+9999999+999999999)-(99+9999+999999+99999999)$
$=1010101005-1010100969$
99
= 909090909999
9999
99999
999999
9999999

+ 99999999
$\begin{array}{r}999999999 \\ \hline 1010101005 \\ \hline\end{array}$
1010101005
-101010096
909090909
(x) In the new number system, the students are firstly taught addition, secondly multiplication, thirdly subtraction and lastly division
(xi) The operation of addition leads to the understanding of the operation of multiplication. The operations of subtraction and multiplication lead to the understanding of division. So, the two operations of addition and subtraction are the fundamental operations. So, in the new number system (statement), only the calculating processes of addition and subtraction are taken into consideration.

APPLICATIONS:

Firstly, the students are taught to mentally learn the addition of 1,2,3, 4 to the numbers 4 to 13 and the subtraction of $1,2,3,4$ from the numbers 4 to 13 . Then, teach the students the new number system. Every student, including slow learners is expected to easily manage all the existing operations: Addition, Subtraction, Multiplication and Division.

1. ADDITION

In the process of addition, instead of adding 9, 8, 7, 6 to a numbers, we subtract 1, 2, 3, 4 respectively from the number to get the sum.

Symbolically: +9	$\longrightarrow-1$
+8	$\longrightarrow-2$
+7	$\longrightarrow-3$
+6	$\longrightarrow-4$

Note:(a) Supplementary rule of addition: If a digit, less than $1,2,3,4$ is added to $9,8,7,6$ respectively, then the digit is added to $9,8,7,6$ respectively to get the sum. If a digit, equal to or more than $1,2,3,4$ is added to $9,8,7,6$ respectively, then subtract $1,2,3,4$ respectively from the digit to get the sum.
(b) For every subtraction of $1,2,3$ or 4 , there is carry over 1 .
(c) In the process of series addition, whenever there is a borrowing of 1 in subtracting 1,2,3 or 4 , there is no carry over 1 in subtracting $1,2,3$ or 4.
(d) Addition Practice Format is attached (Annexure $-3 \& 4$).

Illustrations: COLUMN METHOD OF ADDITION.

(a) 9	9	19	39	49	59
+0	+ 1 +10	+2	+ 3	+ 5	+ 8
9	10	21	42	54	67
8	8	8	18	28	38
+0	+1	+2	+3	+5	+7
8	9	10	21	33	45
7	7	7	7	27	37
+0	+1	+ 2	+ 3	+4	+6
7	8	9	10	31	43
6	6	6	6	6	26
+ $\underline{0}$	+1	+2	+3	+ 4	+ 5
6	7	8	9	10	31
(b) 67	79	689		678	
+92	+ 68	$\begin{array}{r}\text { (} \\ +\quad 798 \\ \hline\end{array}$		+987	
159	147	1487		1665	
(c) 67	69	456		777	
89	88	783		888	
$\begin{array}{r}\text { + } 78 \\ \hline\end{array}$	$\begin{array}{r}\text { a } \\ +\quad 79 \\ \hline 23\end{array}$	$\begin{array}{r}\text { + } 789 \\ \hline\end{array}$		($+\quad 999$	
234	236	2028		2664	
(d) 67	56	456		789	
89	89	987		789	
56	89	987		656	
$\begin{array}{r}\text { P } \\ +89 \\ \hline\end{array}$	$\begin{array}{r}\text { P } \\ +89 \\ \hline 323\end{array}$	$\begin{array}{r}\text { a } \\ +\quad 987 \\ \hline 387\end{array}$		+ 789	
301	323	3417		3023	

HORIZONTAL METHOD OF ADDITION

(a) $9+6+6=21(9-4-4=1,0+2=2)$
(b) $6+7+7=20(6-3-3=0,0+2=2)$
(c) $6+7+8=21(6-3-2=1,0+2=2)$
(d) $6+8+8=22(6-2-2=2,0+2=2)$
(e) $7+8+9=24(7-2-1=4,0+2=2)$
(f) $7+9+9=25 \quad(7-1-1=5,0+2=2)$
(g) $17+8+8+8=41(7-2-2-2=1,1+3=4)$
(h) $26+9+9+9=53(6-1-1-1=3,2+3=5)$
(i) $49+7+8+9=73 \quad(9-3-2-1=3,4+3=7)$
(j) $59+8+8+8+8=91(9-2 \times 4=1,5+4=9)$
(k) $65+9+9+9+9=101(5-4=1,6+4=10)$
(1) $77+9+9+9+9+9+9=131(7-6=1,7+6=13)$
(m) $88+9+9+9+9+9+9+9=151(8-7=1,8+7=15)$
(n) $34+8+8+8=58(14-2-2-2=8,2+3=5)$
(o) $84+7+7+7+7+7+7+7=133(14-7=7,8+6=14)$
(p) $83+9+9+9+9+9+9+9+9+9=164(13-9=4,8+8=16)$
(q) $47+8+8+8+8+8+8+8+8=111(17-16=1,4+7=11)$
(r) $59+7+7+7+7+7+7+7+7=115(29-24=5,5+7=11)$
(s) $53+6+6+6+6+6=83(23-20=3,5+3=8)$
(t) $59+6+7+8+9=89(19-4-3-2-1=9,5+3=8)$
(u) $59+8+8+8+9+9+9=110(9-6-3=0,5+6=11)$
(v) $56+67=123(6-3=3,5-4+1=2,0+1=1)$
(w) $6+66+666+6666+66666+666666$
$=(6+1)(6-4 \times 1+2)(6-4 \times 2-1+3)(16-4 \times 3-1+4)(16-4 \times 4-2+5)(26-4 \times 5)$
$=(7)(4)(0)(7)(3)(6)$
$=740736$
(x) $7+77+777+7777+77777+777777+7777777$
$=(7+1)(7-3 \times 1+2)(7-3 \times 2+3)(7-3 \times 3-1+4)(17-3 \times 4-1+5)(17-3 \times 5-2+6)(27-3 \times 6)$
$=(8)(6)(4)(1)(9)(6)(9)$
$=8641969$
(y) $8+88+888+8888+88888+888888+8888888+88888888$
$=(8+1)(8-2 \times 1+2)(8-2 \times 2+3)(8-2 \times 3+4)(8-2 \times 4+5)(8-2 \times 5+6)(8-2 \times 6-1+7)(18-2 \times 7)$ $=(9)(8)(7)(6)(5)(4)(2)(4)$ $=98765424$
(z) $9+99+999+9999+99999+999999+9999999+99999999+999999999$
$=(9+1)(9-1 \mathrm{x} 1+2)(9-1 \mathrm{x} 2+3)(9-1 \mathrm{x} 3+4)(9-1 \mathrm{x} 4+5)(9-1 \mathrm{x} 5+6)(9-1 \times 6+7)(9-1 \mathrm{x} 7+8)(9-1 \mathrm{x} 8)$
$=(10)(10)(10)(10)(10)(10)(10)(10)(1)$
$=(1)(0+1)(0+1)(0+1)(0+1)(0+1)(0+1)(0+1)(0)(1)$
$=(1)(1)(1)(1)(1)(1)(1)(1)(0)(1)$
$=1111111101$

2. WRITING OF TIMES TABLES UPTO 9 DIGITS

(i) The new rule for determining a times table of any number from 1-99.

The digits in the ones/tens/hundreds places of the multiples of a number can be determined by skip counting. The ones places of the multiples of a number can be determined by skip counting (addition or subtraction). The quantity of one skip is determined by the digit in ones place of the number.
The digits in the tens/hundreds places of the multiples of a number can be determined by skip counting. The quantity of one skip is determined by the digit in the tens place of the number. One additional rule is that if the digit in the ones place of the multiples of the number is less than the ones place of the number, then, lmore is added to the tens place of the multiple of the number in addition to the value obtained by skip counting.

Note: - The following two diagrams can be utilized to determine the digits in the ones places of the multiples of a number.

For addition

For subtraction
(ii) New technique of writing times table from 1 to 100 .
(a) The students will write times table from 1 to 100 without the multiples.
(b) The fill the ones places of the multiples by the skip counting determined by the digit in ones place of the number. The digits in the tens/ hundreds places are determined by the skip counting of the digit in the tens place of the numbers with additional rule that if the digit in ones place of the multiple of the number is less than the ones place of the digit of the number, then, 1 more is added to the skip counting.
(iii)IIlustrations: -
(a) To write the times table of 8 , firstly, write the times table of 8 without the multiples. Secondly, write the ones places of the multiple instead of adding 8 , subtract 2 . So, the ones places of the multiples of 8 are $8,6,4,2,0,8,6,4,2,0$. Thirdly, fill the digits in the tens places of the multiple by the skip counting of the digit in the tens place (in this case, it's 0) with the additional rule that if the digit in ones place of the multiple is less than the digit in ones place of the number, then, add 1 more to the skip counting. So, the times table of 8 can be written as

$$
\begin{aligned}
& 8 \times 1=8 \\
& 8 \times 2=16 \\
& 8 \times 3=24 \\
& 8 \times 4=32 \\
& 8 \times 5=40 \\
& 8 \times 6=48 \\
& 8 \times 7=56 \\
& 8 \times 8=64 \\
& 8 \times 9=72 \\
& 8 \times 10=80
\end{aligned}
$$

(b) To write the times table of 18 , firstly, write the times table of 18 without the multiples. Secondly, write the digits of the ones places of the multiples by skip counting of 8. Instead of adding 8 , subtract 2 . Thus, the digits of the ones places of the multiples are $8,6,4,2,0$, $8,6,4,2,0$. Thirdly, the digits in tens/hundreds places are determined by skip counting of the digit in the tens place of the number (in this case it's 1) with the additional rule that if the digit in ones place of the multiple is less than the digit in ones place of the number, then, 1 more is added to the skip counting. So, the times table of 18 can be written as

$$
\begin{aligned}
& 18 \times 1=18 \\
& 18 \times 2=36 \\
& 18 \times 3=54 \\
& 18 \times 4=72 \\
& 18 \times 5=90 \\
& 18 \times 6=108 \\
& 18 \times 7=126 \\
& 18 \times 8=144 \\
& 18 \times 9=162 \\
& 18 \times 10=180
\end{aligned}
$$

(c) To write the times table of 48 , firstly, write the times table of 48 without the multiples. Secondly, write the digits of the ones places of the multiples by skip counting of 8 . Instead of adding 8 , subtract 2 . Thus, the digits of the ones places of the multiples are $8,6,4,2,0$, $8,6,4,2,0$. Thirdly, the digits in tens/hundreds places are determined by skip counting of the digit in the tens place of the number (in this case it's 4) with the additional rule that if the digit in ones place of the multiple is less than the digit in ones place of the number, then, 1 more is added to the skip counting. So, the times table of 48 can be written as

$$
\begin{aligned}
& 48 \times 1=48 \\
& 48 \times 2=96 \\
& 48 \times 3=144 \\
& 48 \times 4=192 \\
& 48 \times 5=240 \\
& 48 \times 6=288 \\
& 48 \times 7=336 \\
& 48 \times 8=384 \\
& 48 \times 9=432 \\
& 48 \times 10=480
\end{aligned}
$$

(d) To write the times table of 89 , firstly write the times table of 89 without the multiples.

Secondly, write the digits of ones places of the multiples by skip counting of the digit in ones place of the number (in this case, it's 9). Instead of adding 9 , we subtract 1 . Thus, the digits in ones places of the multiples are $9,8,7,6,5,4,3,2,1,0$. Thirdly, write the digits in the tens/hundreds places by skip counting of the digit in the tens place of the number (in this case, it's 8) with the additional rule that if the digit in the ones place of the multiple is less than the digit in the ones place of the number, then, 1 more is added to the skip counting. In this case, of adding 9, we subtract 1 . So, the times table of 89 can be written as

$$
\begin{aligned}
& 89 \times 1=89 \\
& 89 \times 2=178 \\
& 89 \times 3=267 \\
& 89 \times 4=356 \\
& 89 \times 5=445 \\
& 89 \times 6=534 \\
& 89 \times 7=623 \\
& 89 \times 8=712 \\
& 89 \times 9=801 \\
& 89 \times 10=890
\end{aligned}
$$

Note : (a) Let the students write the time tables again and again by applying the above rule and the new technique of writing times tables in square copy. They will write faster every time they write again.
(b) While writing a times table of a number, take a pause at $5^{\text {th }}$ multiple .Check that it is half of the $10^{\text {th }}$ multiple. In case of the digit in the tens place is even, the digit in the unit place is 0 in the $5^{\text {th }}$ multiple and the digit in the tens/hundreds/thousands place is divided by 2 to get the $5^{\text {th }}$ multiple .e.g. $20 / 2=10,40 / 2=20, \ldots, 980 / 2=490,1080 / 2$ $=540$.
In case of the digit in the tens place is odd, the digit in ones place is 5 in the $5^{\text {th }}$ multiple and the digit(s) in the tens/hundreds place is obtained by subtracting 1 from the digit in the tens place and dividing the difference by 2 to get the $5^{\text {th }}$ multiple. e.g. $10 / 2=5$, $30 / 2=15, \ldots, 970 / 2=485,990 / 2=495$.
(c) If the times table is of an odd number, the digits; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 appear exactly once in the ones places of the multiples of the number. If the times table is of an even number, the digits; $0,2,4,6,8$ appear exactly twice (in the same order) in ones places of the multiples of the number.
(d) Tips for remembering the times tables.
(i) $1 \times 1=1,2 \times 1=2,3 \times 1=3, \ldots, 20 \times 1=20$

When a number is multiplied by 1 , the product is the number itself.
(ii) $1 \times 10=10,2 \times 10=20,3 \times 10=30, \ldots, 20 \times 10=200$

When a number is multiplied by 10 , the product has 0 in the ones place.
(iii) The $5^{\text {th }}$ multiple of a number is half of the $10^{\text {th }}$ multiple of the number.
e.g. $2 \times 10=20$, then $2 \times 5=10$
$3 \times 10=30$, then $3 \times 5=15$
$10 \times 10=30$, then $10 \times 5=50$
(iv) Multiplication of two numbers is commutative.
e.g. (a) $2 \times 8=16,8 \times 2=16$
$\Rightarrow 2 \times 8=8 \times 2$
(b) $3 \times 6=6 \times 3$
(v) The ones places of the multiples of 5 and 15 are alternately 5 and 0 .
(vi) The ones places of the multiples of 9 consecutively decrease from 9 to 0 and the tens places of the multiples of 9 consecutively increase from 0 to 9 .
(vii) The ones places of the multiples of 19 consecutively decrease from 9 to 0 and the tens/hundreds places start from 1 to 19 (consecutively plus 2).
(viii) The ones place of the multiples of 8 and 18 consecutively decrease by 2 starting from 8 to 0 .
(ix) Help the students learn the multiples of 1 to 20 in reverse order i.e. from $10^{\text {th }}$ to $1^{\text {st }}$. This exercise enhances the student's multiplication skills. e.g. To know the $7^{\text {th }}, 8^{\text {th }}$ or $9^{\text {th }}$ multiple of any number, the students count the multiples from reverse order and thereby finding the multiple faster.
(x) $1 \times 1=1,2 \times 2=4,3 \times 3=9 \ldots, 10 \times 10=100$.
(xi) The first five digits in ones places of the multiples of even numbers are repeated in the following multiples in the same order.
(xii) The tens/hundreds places of the multiples of $10,20, \ldots, 100$ are the multiples of $1,2, \ldots, 10$ respectively.

Note: (a) Teach the students to write the times tables from 1 to 20 correctly and then help them to memorize the times tables by applying group learning method.
(b) Encourage the students to write the time tables from 1 to 100. The digits in the ones places of the multiples of $1,11,21,31 \ldots, 91$ are equal and that of $2,12,22,32, \ldots, 92$ are equal, \ldots, and that of $9,19,29,39, \ldots, 99$ are equal and that of $10,20,30 \ldots, 100$ are equal.
(c) The sum of the digits of the first multiple to tenth multiple of the numbers $09,18,27,36,45,54,63,72,81,90$ is 9.
(d) The sum of the digits of the first multiple and the tenth multiple of the numbers from 01 to 100 is equal.
(e) Times Table from lto 100 is attached (Annexure-5)
(f) Times Tables practice format is also attached (Annexure-6).
(g) The new rule of writing times tables from 100 to 999.

The digits in ones places of the multiples of a number can be determined by skip counting and the quantity of one skip is determined by the digit in ones places of the number. The digits in tens places of the multiples of a number is determined skip counting and the quantity of one skip is determined by the digit in the tens place of the number with one additional rule that if the digit in tens place of the multiple of the number is less than the ones place of the number, then 1 more is added to the tens places of the multiple of the number in addition to the value obtained by skip counting.
The digits in the hundreds/thousands places of the multiples of a number are determined by skip counting and the quantity of one skip is determined by the digit in the hundreds place of the number with the additional rules that if the digit in the tens place of the multiple number is less than the tens place of the number, then 1 more is added to the hundreds place of the multiple of the number in addition to the value obtained by skip counting and if the digit in the tens place of the multiple of the number is equal or more than the tens place of the number and also has a carry- over 1, then 1 more is added to the hundreds place of the multiple of the number in addition to the value obtained by skip counting.
(h) New technique of writing times table of any number from 100 to 999.
(i) The students will write times table of any number from 100 to 999 without the multiples.
(ii) Fill the ones places of the multiples by skip counting determined by the digit in ones place of the number.
(iii) Fill the tens places of the multiples by the skip counting determined by the digit in the tens place of the number with one additional rule that if the digit in the tens place of
the multiple of the number is less than the ones place of the digit of the number, then 1 more is added to the skip counting.
(iv) Then, fill the hundreds/thousands places of the multiples by skip counting determined by the digit in hundreds place of the number with the additional rules that if the digit in the tens place of the number is less than the digit in the tens place of the number, then 1 more is added to the skip counting and if the digit in the tens place of the multiple of the number is equal or more than the digit in the tens place of the number and also has a carry-over 1,then 1 more is added to the skip counting.
(v) The rule and technique applied to write the times tables of three digit numbers is extendable to larger number of digits. Illustrations of writing times tables up to nine digit numbers are given below.

(i) Illustrations:

(a) \begin{tabular}{rl}

$123 \times 1=123$ \& (b) | 321×1 | $=321$ |
| :--- | :--- |
| 123×2 | $=246$ |
| 321×2 | $=642$ |
| 123×3 | $=369$ |
| 123×4 | $=492$ |$r 321 \times 3=963$

$123 \times 5=615$ \& $321 \times 4=1284$

$123 \times 6=738$ \& $321 \times 5=1605$

$123 \times 7=861$ \& $321 \times 6=1926$

$123 \times 8=984$ \& $321 \times 7=2247$

$123 \times 9=1107$ \& $321 \times 8=2568$

$123 \times 10=1230$ \& $321 \times 9=2889$

\& $321 \times 10=3210$
\end{tabular}

(c) $456 \times 1=456$
(d) $654 \times 1=654$
$654 \times 2=1308$
$654 \times 3=1962$
$654 \times 4=2616$
$654 \times 5=3270$
$654 \times 6=3924$
$654 \times 7=4578$
$654 \times 8=5232$
$654 \times 9=5886$
$654 \times 10=6540$
(e) $789 \times 1=789$
$789 \times 2=1578$
(f) $987 \times 1=987$
$789 \times 3=2367$
$987 \times 2=1974$
$789 \times 4=3156$
$789 \times 5=3945$
$789 \times 6=4734$
$789 \times 7=5523$
$789 \times 8=6312$
$789 \times 9=7101$
$789 \times 10=7890$
$987 \times 3=2961$
$987 \times 4=3948$
$987 \times 5=4935$
$987 \times 6=5922$
$987 \times 7=6909$
$987 \times 8=7896$
$987 \times 9=8883$
$987 \times 10=9870$

(g) $6789 \times 1=6789$	(h) $98765 \times 1=98765$
$6789 \times 2=13578$	$98765 \times 2=197530$
$6789 \times 3=20367$	$98765 \times 3=296295$
$6789 \times 4=27516$	$98765 \times 4=395060$
$6789 \times 5=33945$	$98765 \times 5=493825$
$6789 \times 6=40734$	$98765 \times 6=592590$
$6789 \times 7=47523$	$98765 \times 7=691355$
$6789 \times 8=54312$	$98765 \times 8=790120$
$6789 \times 9=61101$	$98765 \times 9=888885$
$6789 \times 10=67890$	$98765 \times 10=987650$
(i) $456789 \times 1=456789$	(j) $3456789 \times 1=3456789$
$456789 \times 2=913578$	$3456789 \times 2=6913578$
$456789 \times 3=1370367$	$3456789 \times 3=10370367$
$456789 \times 4=1827156$	$3456789 \times 4=13827156$
$456789 \times 5=2283945$	$3456789 \times 5=17283945$
$456789 \times 6=2740734$	$3456789 \times 6=20740734$
$456789 \times 7=3197523$	$3456789 \times 7=24197523$
$456789 \times 8=3654312$	$3456789 \times 8=27654312$
$456789 \times 9=4111101$	$3456789 \times 9=31111101$
$456789 \times 10=4567890$	$3456789 \times 10=34567890$
i) $98765432 \times 1=98765432$	j) $123456789 \times 1=123456789$
$98765432 \times 2=197530864$	$123456789 \times 2=246913578$
$98765432 \times 3=296296296$	$123456789 \times 3=370370367$
$98765432 \times 4=395061728$	$123456789 \times 4=493827156$
$98765432 \times 5=493827160$	$123456789 \times 5=617283945$
$98765432 \times 6=592592592$	$123456789 \times 6=740740734$
$98765432 \times 7=691358024$	$123456789 \times 7=864197523$
$98765432 \times 8=790123456$	$123456789 \times 8=987654312$
$98765432 \times 9=888888888$	$123456789 \times 9=1111111101$
$98765432 \times 10=987654320$	$123456789 \times 10=1234567890$

(vi) I have enclosed annexure - 7: Times tables Samples up to nine digits and annexure -8 : Practice Format ; Times Tables up to nine digits.

3. MLUTIPLICATION

Multiplication, being successive addition, obeys the rule of the new number system. The students are taught to write up to $10^{\text {th }}$ multiples of the digits from 1 to 9 by applying the new number system, the new rule of writing times tables from 1 to 99 and the new technique of writing times tables from 1 to 100 . The students need not memorize the times tables. The students write the first 10 multiples of the digit(s) of the multiplier on the right side of the answer. Another method; write the first ten multiples of the multiplicand on the right hand side of the answer by applying the new number system, and then write the multiple(s) corresponding to the digit(s) of the multiplier from the right hand side and then add the columns to get the product.

Illustration:- (i) FIRST METHOD.

(ii) SECOND METHOD.

In the process of subtraction, instead of subtracting 9,8,7,6 from a number, add 1,2,3,4 respectively to the number to get the difference.

$$
\begin{aligned}
& \text { Symbolically: }-9 \longrightarrow+1 \\
& -8 \longrightarrow+2 \\
& -7 \longrightarrow+3 \\
& -6 \longrightarrow+4
\end{aligned}
$$

Note: (a) Supplementary rule of subtraction. If the digit in the subtrahend is 1,2,3,4 more than the digit in the minuend, then the digit 9, 8, 7, 6 will respectively appear in the difference.

Symbolically: | 1 more | $\longrightarrow 9$ |
| ---: | :--- |
| 2 more | $\longrightarrow 8$ |
| 3 more $\longrightarrow 7$ | |
| 4 more | $\longrightarrow 6$ |

(b) For every addition of 1, 2, 3 or 4, there is borrowing of 1. For every application of the supplementary rule, there is borrowing of 1 .
(c) In the process of series subtraction, whenever there is a carry over 1 in adding 1,2,3 or 4, there is no borrowing of 1 in adding 1, 2, 3 or 4.
(d) Subtraction Practice Format is attached (Annexure -10\&11).

Illustrations: COLUMN METHOD OF SUBTRACTION

(a) 17	16	25	34
- 9	-8	-7	-6
8	8	18	28
(b) 12	38	43	26
-3	$\begin{array}{r}38 \\ -\quad 9 \\ \hline\end{array}$	-5	-8
9	29	38	18
13	24	43	32
-6	$\begin{array}{r} \\ -\quad 7 \\ \hline\end{array}$	-7	-6
7	17	36	26
(c) 345	456	456	567
- 89	- 178	- 269	- 389
256	278	187	178
(d) 432	456	356	678
- 253	- 158	$\begin{array}{r}\text { - } 187 \\ \hline\end{array}$	-289 -389
179	298	169	389
(e) 6786	2342	6328	6788
-4789	- 678	- 1439	- 3789
1997	1664	4889	2999
(f) 6543	7823	9876	4321
$\begin{array}{r}\text { - } 3456 \\ \hline\end{array}$	- 5934	- 6879	$\begin{array}{r}-1234 \\ \hline\end{array}$
3087	1889	2997	3087

HORIZONTAL METHOD OF SUBTRACTION

(a) $31-6-6=19 \quad(1+4+4=9,3-2=1)$
(b) $42-6-7=29 \quad(2+4+3=9,4-2=2)$
(c) $21-7-7=7 \quad(1+3+3=7,2-2=0)$
(d) $43-7-8=28(3+3+2=8,4-2=2)$
(e) $54-8-8=38 \quad(4+2+2=8,5-2=3)$
(f) $64-8-9=47(4+2+1=7,6-2=4)$
(g) $41-8-8-9=16(1+2+2+1=6,4-3=1)$
(h) $51-8-8-8-8=19(1+2+2+2+2=9,5-4=1)$
(i) $60-8-8-9-9=26(0+2+2+1+1=6,6-4=2)$
(j) $82-9-9-9-9-9=37(2+5=7,8-5=3)$
(k) $81-9-9-9-9-9-9-9=18(1+7=8,8-7=1)$
(1) $91-9-9-9-9-9-9-9-9=19(1+8=9,9-8=1)$
(m) $85-9-9-9-9-9-9-9-9-9=4(5+9=14,8-8=0)$
(n) $52-6-6-6-6=28(2+16=18,5-3=2)$
(o) $78-7-7-7-7-7=43(8+15=23,7-3=4)$
(p) $63-6-7-8-9=33(3+4+3+2+1=13,6-3=3)$
(q) $45-39=6(5+1=6,4-3-1=0)$
(r) $87-58=29(7+2=9,8-5-1=2)$
(s) $687-498=189(7+2=9,8+1-1=8,6-4-1=1)$
(t) $78-37-29=12(8+3+1=12,7-3-2-1=1)$
(u) $956-389-478=89(6+1+2=9,5+2+3-2=8,9-3-4-2=0)$
(v) $987-498-389=100(7+2+1=10,8+1+2-1=10,9-4-3-1=1)$
(w) $789-267-397=125(9+3+3=15,8+4+1-1=12,7-2-3-1=1)$
(x) $978-267-378-289=44(8+3+2+1=14,7+4+3+2-2=14,9-2-3-2-2=0)$
(y) $3765-987-798-798=1182(5+3+2+2=12,6+2+1+1-2=8,7+1+3+3-3=11,3-2=1)$
(z) $4235-789-879-979=1588(5+1+1+1=8,3+2+3+3-3=8$

$$
2+3+2+1-3=5,4-3=1)
$$

5. DIVISION

In the process of division, the students are firstly taught the new techniques of subtraction and then, they are taught to write up to the $10^{\text {th }}$ multiple of any number from 1 to 99 by applying the new number system, the new rule of writing times tables from 1 to 99 and the new technique of writing times tables from 1 to 100 .The students need not memorize the times tables. Write the first 10 multiples of the divisor on the right hand of the answer.

Illustrations:

a) Divide 345 by 2 .
Sol: 2) 345(1722$\frac{2}{14}$4
6
14 8
5 10
-4 12
Quotient $=172$ 1614
Remainder $=1$ 18
c) Divide 567 by 4 .
Sol; 4) 567 (1414

4
16

16 16
7 20
$+4$ 24
3 28
Quotient $=141$ 32
Remainder $=3$ 36
40

d) Divide 567 by 5 .

d) Divide 567 by 5 .
Sol:
Sol: 5) 567 (113 5) 567 (113 5 5
5 10
Quotient $=189$ 24
Remainder $=0$ 27
Sol; 3)567(189 3

b)
$\frac{3}{26}$ 69
$\underline{24}$ 12
27 15
$\underline{27}$ 182130$-5$15

- 5 20
17 25
15 30
2 35
Quotient $=113$ 40
Remainder $=2$ 4550
e) Divide 567 by 6 .
Sol:6) 567 (94 6
54 12
27 18
-24 24
36
Quotient = 94 42
Remainder $=3$ 4854
60
f) Divide 567 by 7 .
Sol; 7) 567 (81 7
56 14
7 21
7 28
30
335Quotient $=81$49
Remainder= 0 5663
70
g) Divide 267 by 9
Sol:- 9
$9) 267(29$
18
18 18273645
5463
\therefore Quotient $=29$ 72
and remainder $=6$ 81
$\frac{3}{26}$
$\frac{24}{27}$
$\underline{27}$
0
Quotient $=189$
Remainder $=0$ 8 1 30
k) Divide 3456 by 29 .

Sol: 29) 3456 (119
$55 \quad 87$
$\underline{29} 116$
$266 \quad 145$
$\underline{261} 174$
$5 \quad 203$
Quotient $=119 \quad 232$
261
Reminder $=5 \quad 290$

i) Divide 3456 by 17 .

Sol; 17) 3456 (203 17
34
56
34
56
$51 \quad 68$
5
85
102
119
Quotient $=203 \quad 136$
Remainder $=5$
153
170
n) Divide 3456 by 32 .

Sol: 32) 3456 ($108 \quad 32$
32
256
64
96
256
128
160
192
Quotient $=108 \quad 224$
256
Remainder $=0 \quad 288$
320
n) Divide 6789 by 54 .

Sol: 54) 6789 (125
54
$\underline{54} 108$
138
162
$\underline{108}$
309
216
$\underline{270} 324$
$39 \quad 378$
Quotient $=125 \quad 432$
Remainder $=39$
486
540
p) Divide 34567 by 75 .
Sol:75) $34567(460$ $300 \quad 150$
$456 \quad 225$
$450 \quad 300$
$67 \quad 375$
Quotient $=460 \quad 525$
Remainder $=67 \quad 600$
675
750
450
m) Divide 5678 by 49 .

Sol: 49) 5678 (115 49
$49 \quad 98$
$77 \quad 147$
$49 \quad 196$
$288 \quad 245$
$\underline{245} 294$
$43 \quad 343$
Quotient $=115 \quad 392$
Remainder $=43 \quad 441$
490
o) Divide 3456 by 65 .
Sol: 65) $3456(53$

$$
130
$$

$325 \quad 130$
206195
$\underline{195} \quad 260$
$11 \quad 325$
390
Quotient $=53 \quad 455$
Remainder $=11 \quad 520$

650
q) Divide 5678 by 89 .

Sol: 89) 5678 (6389
$\underline{534} 178$
$338 \quad 267$

267
71

s) Divide 5678 by 97 .		t) Divide 123456 by 78 .	
Sol; 97) 5678 (58	97	Sol: 78)123456 (1582	78
485	194	78	156
828	291	454	234
776	388	390	312
52	485	645	390
	582	624	468
	679	216	546
Quotient $=58$	776	156	624
Remainder $=52$	873	60	702
	970		780
		Quotient $=1582$	
		Remainder $=60$	
u) Divide 123456789 by 87 .		v) Divide 123456789 by 98	
Sol: 87) $\begin{gathered}123456789 \\ 87\end{gathered} 1419043$	87	Sol: 98) 123456789 (1259763	98
	174	$\underline{98}$	196
364	261	254	294
348	348	$\underline{196}$	392
165	435	585	490
87	522	490	588
786	609	956	686
783	696	882	784
378	783	747	882
348	870	686	980
309		618	
$\underline{261}$		588	
Quotient $=1419043{ }^{48}$		309	
		$\underline{294}$	
Quotient $=1419043$Remainder $=48$		15	
Remainder $=48$		Quotient $=1259763$	
		Remainder $=15$	
w) Divide 987654321 by 123 .		x) Divide 123456789 by 456 .	
Sol: 123) 987654321(8029709	123	Sol: 456) 123456789 (270738	456
$\underline{984}$	246	$\underline{912}$	912
365	369	3225	1368
$\underline{246}$	492	$\underline{3192}$	1824
1194	615	3367	2280
1107	738	$\underline{3192}$	2736
873	861	1758	3192
861	984	1368	3648
1221	1107	3909	4104
$\underline{1197}$	1230	3648	4560
24		261	
Quotient $=8029709$		Quotient $=270738$	
Remainder $=24$		Remainder $=261$	

y) Divide 987654321 by 789 .

Sol: 789) 987654321 (1251779789
$789 \quad 1578$
$1986 \quad 2367$
1578
$4085 \quad 3945$
$3945 \quad 4734$
$1404 \quad 5523$
789 6312
$6153 \quad 7101$
$\underline{5523}$
7890
6302
5523
7791
7101
690
Quotient $=125177$, Remainder $=690$

Note; Divide 9876543210 by 789.

Sol : 789) 9876543210 (12517798.745	789
789	1578
1986	2367
1578	3156
4085	3945
3945	4734
1404	5523
789	6312
6153	7101
5523	7890
6302	
5523	
7791	
7101	
6900	
6312	
5880	
5523	
3570	
3156	
4140	
3945	
195	

Quotient $=12517798.745 \ldots=12517798.75$ (appx)

Note; Division Practice Format is attached (Annexure -12).
6. IDENTIFICATION OF PRIME NUMBERS BETWEEN 1 AND 100.

NUMBER S	FACTORS	NUMBER OF FACTORS	NUMBERS	FACTORS	NUMBER OF FACTORS
1.	1	1	26.	1,2,13,26	4
2.	1,2	2	27.	1,3,9,27	4
3.	1,3	2	28.	1,2,4,7,14,28	6
4.	1,2,4	3	29.	1,29	2
5.	1,5	2	30.	1,2,3,5,6,10,15,30	8
6.	1,2,3,6	4	31.	1,31	2
7.	1,7	2	32.	1,2,4,8,16,32	6
8.	1,2,4,8	4	33.	1,3,11,33	4
9.	1,3,9	3	34.	1,2,17,34	4
10.	1,2,5,10	4	35.	1,5,7,35	4
11.	1,11	2	36.	1,2,3,4,6,9,12,18,36	9
12.	1,2,3,4,6,12	6	37.	1,37	2
13.	1,13	2	38.	1,2,19,38	4
14.	1,2,7,14	4	39.	1,3,13,39	4
15.	1,3,5,15	4	40.	1,2,4,5,8,10,20,40	8
16.	1,2,4,8,16	5	41.	1,41	2
17.	1,17	2	42.	1,2,3,6,7,14,21,42	8
18.	1,2,3,6,9,18	6	43.	1,43	2
19.	1,19	2	44.	1,2,4,11,22,44	6
20.	1,2,4,5,10,20	6	45.	1,3,5,9,15,45	6
21.	1,3,7,21	4	46.	1,2,23,46	4
22.	1,2,11,22	4	47.	1,47	2
23.	1,23	2	48.	1,2,3,4,6,8,12,16,24,48	10
24.	1,2,3,4,6,8,12,24	8	49.	1,7,49	3
25.	1,5,25	3	50.	1,2,5,10,25,50	6

NUMBERS	FACTORS	NUMBER OF FACTORS	NUMBERS	FACTORS	NUMBER OF FACTORS
51.	1,3,17,51	4	76.	1,2,4,19,38,76	6
52.	1,2,4,13,26,52	6	77.	1,7,11,77	4
53.	1,53	2	78.	1,2,3,6,13,26,39,78	8
54.	1,2,3,6,9,18,27,54	8	79.	1,79	2
55.	1,5,11,55	4	80.	1,2,4,5,8,10,16,20,40,80	10
56.	1,2,4,7,8,14,28,56,	8	81.	1,3,9,27,81	5
57.	1,3,19,57	4	82.	1,2,41,82	4
58.	1,2,29,58	4	83.	1,83	2
59.	1,59	2	84.	1,2,3,4,6,7,12,14,21,28,42,84	12
60.	$\begin{aligned} & \text { 1,2,3,4,6,10,15,20, } \\ & 30,60 \end{aligned}$	10	85.	1,5,17,85	4
61.	1,61	2	86.	1,2,43,86	4
62.	1,2,31,62	4	87.	1,3,29,87	4
63.	1,3,7,9,21,63,	6	88.	1,2,4,8,11,22,44,88	8
64.	1,2,4,8,16,32,64	7	89.	1,89	2
65.	1,5,13,65	4	90.	1,2,3,5,6,9,10,15,18,30,45,90	12
66.	1,2,3,6,11,22,33,66	8	91.	1,7,13,91	4
67.	1,67	2	92.	1,2,4,23,46,92	6
68.	1,2,4,17,34,68	6	93.	1,3,31,93	4
69.	1,3,23,69	4	94.	1,2,47,94	4
70.	1,2,5,7,10,14,35,70	8	95.	1,5,19,95	4
71.	1,71	2	96.	1,2,3,4,6,8,12,16,24,32,48,96	12
72.	$\begin{array}{\|l\|} \hline 1,2,3,4,6,8,9,12,18 \\ 24,36,72 \end{array}$	12	97.	1,97	2
73.	1,73	2	98.	1,2,7,14,49,98	6
74.	1,2,37,74	4	99.	1,3,9,11,33,99	6
75.	1,3,5,15,25,75	6	100.	1,2,4,5,10,20,25,50,100	9

Prime numbers have exactly two factors. So, they are $2,3,5,7,11,13,17,19,23,29,31,37,41,43$, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

The number of prime numbers between 1 and 100 is 25 .
Note: (a) Factor(s): Factor(s) of a number is/are exact divisor(s) of the number.
e.g. (i) The factors of 6 are 1,2, 3, 6.
(ii) The factors of 28 are 1, 2, 4, 7, 14, 28.
(b) Prime number is a (natural) number which has exactly two factors.
e.g. 2, 3, 5, 7, 11, 13, 17, 19 etc.
(c) Composite number is number which has more than two factors. e.g. 4, 6, 8, 9 etc.
(d) 1 is the only number which has only one factor.
(e) 1 is neither prime nor composite number.
(f) Illustration:- To find the factors of a number, say 48, we write it as a product of primes i.e. $48=2 \times 2 \times 2 \times 2 \times 3$. Any number is divisible by 1. Therefore, 1 is the factor of 48. Taking the factors of 48 , one prime factor at a time, we get 2 and 3 as the factors of 48 . Taking the factors of 48 , two prime factors at a time, we get $2 \times 2=4$ and $2 \times 3=6$ as the factors of 48 . Taking the factors of 48, three prime factors at a time, we get $2 \times 2 \times 2=8$ and $2 \times 2 \times 3=$ 12 as the factors of 48 . Taking the factors of 48 , four prime factors at a time, we get $2 \times 2 \times$ $2 \times 2=16$ and $2 \times 2 \times 2 \times 3=24$ as the factors of 48 . Taking all the factors of 48 at a time, we get $2 \times 2 \times 2 \times 2 \times 3=48$ as the factor of 48 . Thus the factors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24 and 48.
(g) 2 is the only prime number which is even.
(h) The number of factors of 1 to 100 are even except perfect squares which are odd.
(i) The product of the pairs of the factors of the numbers which has even number of factors is the number.
(j) In case of the odd number of the factor(s), the product of the two square roots of the number (perfect square) is the number and product of the remaining pairs of factors is the number.
(k) Teach the students to identify all the prime numbers between 1 and 100.

The sample of the identification of prime numbers (practice format) are attached (Annexure-13).
(l) The students need to memorize all the prime numbers between 1 and 100 in ascending order. This exercise is to enhance the speed of calculation.
(m)The students are advised to mentally find the factors of the numbers from 1 to 100 after finding the factors by applying prime factorization method.

7. Test of divisibility of numbers by Prime Number between 1 and $100(2,3,5$, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97).

A number is divisible by 2 if it has any of the digits $0,2,4,6,8$ in its ones place. e.g. 32, 56, 98, 370, 3504 are divisible by 2.

Note;(i) The whole numbers which are divisible by 2 are $0,2,4,6,8,10,12, \ldots$
(ii) The single digit numbers divisible by 2 are 0, 2, 4, 6 and 8 .

If the sum of the digits of a number is divisible by 3, then the number is divisible by 3. e.g. 57, 87, 321, 777, 4443 are divisible by 3.
Note; The single digit numbers divisible by 3 are 0, 3, 6 and 9 .
A number which has either 0 or 5 in its ones place is divisible 5. e.g. 30, 95, 760, 2205 are divisible by 5 .
Note; The single digit numbers divisible by 5 are 0, 5.

To test the divisibility of a number by 7, delete the digit in ones place and from the number so obtained subtract twice the deleted digit. If the difference is 0 or the multiple of 7, then the given number is divisible by 7, otherwise not. If the difference is large, repeat the same process on it. For example, 8778 is divisible by 7 , for $877-8 \mathrm{x} 2=877-16=861,86-1 \mathrm{x} 2=86-2=84$ and $8-4 \mathrm{x} 2=8-8=0$.

Alternative method; To test the divisibility of a number (which is not divisible by 2, 3 or 5) by 7, memorize/write the first nine multiples of 7 by applying the new method of writing times table, namely $7,14,21,28,35,42,49,56,63$. Counting from the left-hand side, write the nearest multiple of 7 which is less than or equal to the number on the left-hand side, write slash and then write the difference along with the remaining unaffected digit(s). The same process is repeated and if the last number on the right side is 0 or multiple of 7 , then the number is divisible by 7, otherwise not. Illustrations;
(i) $91 \rightarrow \underline{7} / \underline{21} \Rightarrow 91 \div 7=13$
(ii) $133 \rightarrow \underline{7} / \underline{63} \Rightarrow 133 \div 7=19$
(iii) $343 \rightarrow \underline{28 / 63} \Rightarrow 343 \div 7=49$
(iv) $2401 \rightarrow \underline{21} / 301 \rightarrow \underline{28} \underline{21} \Rightarrow 2401 \div 7=343$
(v) $12103 \rightarrow \underline{7 / 5103} \rightarrow \underline{49} / 203 \rightarrow \underline{14} / \underline{63} \Rightarrow 12103 \div 7=1729$

Note; (i) The single digit numbers divisible by 7 are 0, 7 .
(ii) $140 \rightarrow \underline{14} / \underline{0} \Rightarrow 140 \div 7=20$
(iii) $2100 \rightarrow \underline{21 / 00} \Rightarrow 2100 \div 7=300$

If the difference between the sum of the digits at odd places (from the right) and the sum of the digits at even places (from the right) of the number is either 0 or divisible by 11, then the number is divisible by 11. e.g. 121, 1331, 6996, 29381 are divisible by 11.

Alternative method; To test the divisibility of a number (which is not divisible by 2, 3, 5 or 7) by 11, memorize/write the first nine multiples of 11 by applying the new method of writing times table, namely $11,22,33,44,55,66,77,88,99$. Counting from the left-hand side, write the nearest multiple of 11 which is less than or equal to the number on the lefthand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 11, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 11, then the number is divisible by 11, otherwise not.
Illustrations;
(i) $121 \rightarrow \underline{11} \underline{11} \Rightarrow 121 \div 11=11$
(ii) $187 \rightarrow \underline{11} \underline{77} \Rightarrow 187 \div 11=17$
(iii) $209 \rightarrow \underline{11 / \underline{99}} \Rightarrow 209 \div 11=19$
(iv) $1331 \rightarrow \underline{11} / 231 \rightarrow \underline{22} / \underline{11} \Rightarrow 1331 \div 11=121$
(v) $2717 \rightarrow \underline{22} / 517 \rightarrow \underline{44} \underline{77} \Rightarrow 2717 \div 11=247$
(vi) $14641 \rightarrow \underline{11} / 3641 \rightarrow \underline{33} / 341 \rightarrow \underline{33} / \underline{11} \Rightarrow 14641 \div 11=1331$
(vii) $45089 \rightarrow \underline{44 / 1089 \rightarrow \underline{99} / \underline{99} \Rightarrow 45089 \div 11=4099}$
(viii) $46189 \rightarrow \underline{44 / 2189 ~} \rightarrow \underline{11 / 1089 \rightarrow 99 / \underline{9}} \Rightarrow 46189 \div 11=4199$

Note; (i) The only single digit number divisible by 11 is 0 .
(ii) $220 \rightarrow \underline{22} / \underline{0} \Rightarrow 220 \div 11=20$
(iii) $7700 \rightarrow \underline{77 / 00} \Rightarrow 7700 \div 11=700$
(iv) 0 is divisible by any prime number.

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7 orl1) by 13, memorize/write the first nine multiples of 13 by applying the new method of writing times table, namely 13, 26, $39,52,65,78,91,104,117$. Counting from the left-hand side, write the nearest multiple of 13 which is less than or equal to the number on the lefthand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 13, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 13 , then the number is divisible by 13, otherwise not. Illustrations;
(i) $169 \rightarrow \underline{13} / \underline{69} \Rightarrow 169 \div 13=13$
(ii) $247 \rightarrow \underline{13} / \underline{117} \Rightarrow 247 \div 13=19$
(iii) $2197 \rightarrow \underline{13} / 897 \rightarrow \underline{78} / \underline{117} \Rightarrow 2197 \div 13=169$
(iv) $2873 \rightarrow \underline{26 / 273} \rightarrow \underline{26} \underline{13} \Rightarrow 2873 \div 13=221$
(v) $6409 \rightarrow \underline{52 / 1209 \rightarrow \underline{117} / 39 \rightarrow \underline{91} / \underline{51} \Rightarrow 6409 \div 13=493}$
(vi) $9217 \rightarrow \underline{91 / 117} \Rightarrow 9217 \div 13=709$
(vii) $121771 \rightarrow \underline{117 / 4771} \rightarrow \underline{39 / 871} \rightarrow \underline{78 / 91} \Rightarrow 121771 \div 13=9367$

Note; (i) The only single digit number divisible by 13 is 0 .
(ii) $260 \rightarrow \underline{26} / \underline{0} \Rightarrow 260 \div 13=20$
(iii) $3900 \rightarrow \underline{39 / 00} \Rightarrow 3900 \div 13=300$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11 or13)
by 17, memorize/write the first nine multiples of 17 by applying the new method of writing times table, namely $17,34,51,68,85,102,119,136,153$. Counting from the left-hand side, the nearest multiple of 17 which is less than or equal to the number on the left-hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 17, then insert 0 in the quotient.
The same process is repeated and if the last number is 0 or multiple of 17 , then the number is divisible by 17, otherwise not. Illustrations;
(i) $289 \rightarrow \underline{17} / \underline{119} \Rightarrow 289 \div 17=17$
(ii) $323 \rightarrow \underline{17 / 153} \Rightarrow 323 \div 17=19$
(iii) $493 \rightarrow \underline{34 / \underline{153} \Rightarrow 493 \div 17=29}$
(iv) $4913 \rightarrow \underline{34 / 1513} \rightarrow \underline{136} / \underline{153} \Rightarrow 4913 \div 17=289$
(v) $10319 \rightarrow \underline{102} / \underline{119} \Rightarrow 10319 \div 17=607$
(vi) $83521 \rightarrow \underline{68} / 15521 \rightarrow \underline{153} / 221 \rightarrow \underline{17} / \underline{51} \Rightarrow 83521 \div 17=4913$
(vii) $215441 \rightarrow \underline{17 / 45441} \rightarrow \underline{34 / 11441} \rightarrow \underline{102 / 1241} \rightarrow \underline{119} \underline{51} \Rightarrow 215441 \div 17=12673$

Note; (i) The only single digit number divisible by 17 is 0 .
(ii) $340 \rightarrow \underline{34} / \underline{0} \Rightarrow 340 \div 17=20$
(iii) $5100 \rightarrow \underline{51 / 00} \Rightarrow 510 \div 17=300$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11, 13 or17) by 19, memorize/write the first nine multiples of 19 by applying the new method of writing times table, namely 19, 38, 57,76, 95, 114, 135, 152, 171. Counting from the left-hand side, the nearest multiple of 19 which is less than or equal to the number on the left-hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 19, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 19 , then the number is divisible by 19, otherwise not. Illustrations;
(i) $361 \rightarrow \underline{19} / \underline{171} \Rightarrow 361 \div 19=19$
(ii) $551 \rightarrow \underline{38 / 171} \Rightarrow 551 \div 19=29$
(iii) $6859 \rightarrow \underline{57 / 1159 \rightarrow \underline{114}} \underline{19} \Rightarrow 6859 \div 19=361$
(iv) $12673 \rightarrow \underline{114 / 1273} \rightarrow \underline{114} / \underline{133} \Rightarrow 12673 \div 19=667$
(v) $13471 \rightarrow \underline{133} / \underline{171} \Rightarrow 13471 \div 19=709$
(vi) $130321 \rightarrow \underline{114 / 16321} \rightarrow \underline{152} / 1121 \rightarrow \underline{95} / \underline{171} \Rightarrow 130321 \div 19=6859$
(vii) $392863 \rightarrow \underline{38 / 12863} \rightarrow \underline{114 / 1463} \rightarrow \underline{133 / 133} \Rightarrow 392863 \div 19=20677$

Note; (i)The only single digit number divisible by 19 is 0 .
(ii) $380 \rightarrow \underline{38} / \underline{0} \Rightarrow 380 \div 19=20$
(iii) $5700 \rightarrow \underline{57} \underline{00} \Rightarrow 5700 \div 19=300$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11, 13,17or19) by 23, memorize/write the first nine multiples of 19 by applying the new method of writing times table, namely 23, 46, 69,92,115,138,161, 184,207. Counting from the left-hand side, the nearest multiple of 23 which is less than or equal to the number on the left-hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 23, then insert 0 in the quotient.

The same process is repeated and if the last number is 0 or multiple of 23 , then the number is divisible by 23, otherwise not. Illustrations;
(i) $529 \rightarrow \underline{46} \underline{69} \Rightarrow 529 \div 23=23$
(ii) $667 \rightarrow \underline{46 / 23} \Rightarrow 667 \div 23=29$
(iii) $12167 \rightarrow \underline{115 / 667} \rightarrow \underline{46 / 207} \Rightarrow 12167 \div 23=529$
(iv) $44689 \rightarrow \underline{23} / \underline{21289} \rightarrow \underline{207} / 989 \rightarrow \underline{92} / \underline{69} \Rightarrow 44689 \div 23=1943$
(v) $69161 \rightarrow \underline{69 / 161} \Rightarrow 69161 \div 23=3007$
(vi) $149477 \rightarrow \underline{138 / 11477} \rightarrow \underline{22 / 2277} \rightarrow \underline{207} / 207 \Rightarrow 14947 \div 23=6499$
(vii) $4633787 \rightarrow \underline{46 / 33787 \rightarrow \underline{23} / 10787 \rightarrow \underline{92} / 1587 \rightarrow \underline{138} / 207 \Rightarrow 4633787 \div 23=201469}$

Note; (i) The only single digit number divisible by 23 is 0 .
(ii) $460 \rightarrow \underline{46 / \underline{0}} \Rightarrow 460 \div 23=20$
(iii) $6900 \rightarrow \underline{69} \underline{00} \Rightarrow 6900 \div 23=300$

To test the divisibility of a number (which is not divisible by $2,3,5,7,11,13,17$, 19 or 23) by 29, memorize/write the first nine multiples of 29 by applying the new method of writing times table, namely29, 58, 87,116, 145, 174, 203, 232,261. Counting from the lefthand side, the nearest multiple of 29 which is less than or equal to the number on the lefthand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 29 , then insert 0 in the quotient. The process is repeated and if the last number is 0 or multiple of 29 , then the number is divisible by 29, otherwise not. Illustrations;
(i) $841 \rightarrow \underline{58 / 261} \Rightarrow 841 \div 29=29$
(ii) $1943 \rightarrow \underline{174 / 203} \Rightarrow 1943 \div 29=67$
(iii) $3161 \rightarrow \underline{29} \underline{261} \Rightarrow 3161 \div 29=109$
(iv) $38657 \rightarrow \underline{29 / 9657 \rightarrow \underline{87 / 957} \rightarrow \underline{87 / 87} \Rightarrow 38657 \div 29=1333}$
(v) $104081 \rightarrow \underline{87 / 17081} \rightarrow \underline{145} / 2581 \rightarrow \underline{232} \underline{261} \Rightarrow 104081 \div 29=3589$
(vi) $1253206 \rightarrow \underline{116 / 93206} \rightarrow \underline{87 / 6206} \rightarrow \underline{58 / 406} \rightarrow \underline{29} / \underline{116} \Rightarrow 1253206 \div 29=43214$

Note; (i) The only single digit number divisible by 29 is 0 .
(ii) $580 \rightarrow \underline{58 / 0} \Rightarrow 580 \div 29=20$
(iii) $8700 \rightarrow \underline{87} \underline{00} \Rightarrow 8700 \div 29=300$

To test the divisibility of a number (which is not divisible by $2,3,5,7,11,13,17$, 19, 23 or29) by 31, memorize/write the first nine multiples of 31 by applying the new method of writing times table, namely 31, 62, 93, 124, 155, 186, 217, 248, 279. Counting from the left-hand side, the nearest multiple of 31 which is less than or equal to the number on the lefthand side, write slash and then write the difference along with the remaining unaffected
digit(s). In case, the remainder with the next digit is less than 31, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 31, then the number is divisible by 31, otherwise not. Illustrations;
(i) $961 \rightarrow \underline{93} / \underline{31} \Rightarrow 961 \div 31=31$
(ii) $1147 \rightarrow \underline{93} / \underline{217} \Rightarrow 1147 \div 31=37$
(iii) $1457 \rightarrow \underline{124 / 217} \Rightarrow 1457 \div 31=47$
(iv) $29791 \rightarrow \underline{279} / 1891 \rightarrow \underline{186} / \underline{31} \Rightarrow 29791 \div 31=961$
(v) $47027 \rightarrow \underline{31 / 16027 \rightarrow \underline{155 / 527} \rightarrow \underline{31} \underline{217} \Rightarrow 47027 \div 31=1517}$
(vi) $126697 \rightarrow \underline{124 / 2697} \rightarrow \underline{248 / 217} \Rightarrow 126697 \div 31=4087$

Note; (i) The only single digit number divisible by 31 is 0 .
(ii) $620 \rightarrow \underline{62} / 0 \Rightarrow 620 \div 31=20$
(iii) $9300 \rightarrow \underline{93} / \underline{00} \Rightarrow 9300 \div 31=300$

To test the divisibility of a number (which is not divisible by $2,3,5,7,11,13,17,19,23,29$ or 31) by 37, memorize/write the first nine multiples of 37 by applying the new method of writing times table, namely 37, 74, 111, 148, 185, 222, 259, 296, 333. Counting from the left - hand side, the nearest multiple of 37 which is less than or equal to the number on the left - hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 37 , then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 37, then the number is divisible by 37, otherwise not. Illustrations;
(i) $1369 \rightarrow \underline{111 / 259} \Rightarrow 1369 \div 37=37$
(ii) $1517 \rightarrow \underline{148} \underline{37} \Rightarrow 1517 \div 37=41$
(iii) $50653 \rightarrow \underline{37 / 13653} \rightarrow \underline{111 / 2553} \rightarrow \underline{222 /} \underline{333} \Rightarrow 50653 \div 37=1369$
(iv) $65231 \rightarrow \underline{37 / 28231} \rightarrow \underline{259} / 2331 \rightarrow \underline{222} \underline{111} \Rightarrow 65231 \div 37=1763$
(v) $195841 \rightarrow \underline{185} / 10841 \rightarrow \underline{74 / 3441} \rightarrow \underline{333} / \underline{111} \Rightarrow 195841 \div 37=5293$

Note; (i) The only single digit number divisible by 37 is 0 .
(ii) $370 \rightarrow \underline{37 / 0} \Rightarrow 370 \div 37=37$
(iii) $7400 \rightarrow \underline{74} / \underline{00} \Rightarrow 7400 \div 37=200$

To test the divisibility of a number (which is not divisible by $2,3,5,7,11,13,17,19,23,29,31$ or 37) by 41, memorize/write the first nine multiples of 41 by applying the new method of writing times table, namely 41, 82, 123, 164, 205, 246, 287, 328, 369. Counting from the left - hand side, the nearest multiple of 41 which is less than or equal to the number on the left - hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder
with the next digit is less than 41, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 41, then the number is divisible by 41, otherwise not. Illustrations;
(i) $1681 \rightarrow \underline{164 / 41} \Rightarrow 1681 \div 41=41$
(ii) $1927 \rightarrow \underline{164 / 287} \Rightarrow 1927 \div 41=47$
(iii) $3977 \rightarrow \underline{369} \underline{287} \Rightarrow 3977 \div 41=97$
(iv) $68921 \rightarrow \underline{41 / 27921} \rightarrow \underline{246} / 3321 \rightarrow \underline{328 / 41} \Rightarrow 68921 \div 41=1681$
(v) $129109 \rightarrow \underline{123 / 6109 \rightarrow \underline{41} / 2009 \rightarrow \underline{164 / 369} \Rightarrow 129109 \div 41=3149}$
(vi) $4391633 \rightarrow \underline{41 / 291633} \rightarrow \underline{287} / 4633 \rightarrow \underline{41 / 533} \rightarrow \underline{41 / 123} \Rightarrow 4391633 \div 41=107113$

Note; (i) The only single digit number divisible by 41 is 0 .
(ii) $410 \rightarrow \underline{41} / \underline{0} \Rightarrow 410 \div 41=10$
(iii) $82000 \rightarrow \underline{82 / 000} \Rightarrow 82000 \div 41=2000$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 or 41) by 43, memorize/write the first nine multiples of 31 by applying the new method of writing times table, namely 43, 86, 129, 172, 215, 258, 301, 344, 387. Counting from the left - hand side, the nearest multiple of 43 which is less than or equal to the number on the left - hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 43, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 43, then the number is divisible by 43, otherwise not. Illustrations;
(i) $1849 \rightarrow \underline{172 / 129} \Rightarrow 1849 \div 43=43$
(ii) $2021 \rightarrow \underline{172 / 301} \Rightarrow 2021 \div 43=47$
(iii) $4171 \rightarrow \underline{387} \underline{\underline{301} \Rightarrow 4171 \div 43=97}$
(iv) $79507 \rightarrow \underline{43} / 36507 \rightarrow \underline{344} / 2107 \rightarrow \underline{172} / \underline{387} \Rightarrow 79507 \div 43=1849$
(v) $107113 \rightarrow \underline{86} / 21113 \rightarrow \underline{172 / 3913} \rightarrow \underline{387 / 43} \Rightarrow 107113 \div 43=2491$
(vi) $279457 \rightarrow \underline{258 / 21457 \rightarrow \underline{172 / 4257} \rightarrow \underline{387} / \underline{387} \Rightarrow 279457 \div 43=6499 ~}$
(vii) $6319667 \rightarrow \underline{43 / 2019667} \rightarrow \underline{172 / 299667} \rightarrow \underline{258 / 41667} \rightarrow \underline{387 / 2967} \rightarrow \underline{258} / \underline{387}$
$\Rightarrow 6319667 \div 43=146969$

Note; (i) The only single digit number divisible by 43 is 0 .
(ii) $860 \rightarrow \underline{86} / \underline{0} \Rightarrow 860 \div 43=20$
(iii) $12900 \rightarrow \underline{129} / \underline{00} \Rightarrow 12900 \div 43=300$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,37, 41 or 43) by 47, memorize/write the first nine multiples of 47 by applying the new method of writing
times table, namely 47, 94, 141, 188, 235, 282, 329, 376, 423. Counting from the left - hand side, the nearest multiple of 47 which is less than or equal to the number on the left - hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 47, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 47, then the number is divisible by 47, otherwise not. Illustrations;
(i) $2209 \rightarrow \underline{188 / 329} \Rightarrow 2209 \div 47=47$
(ii) $2491 \rightarrow \underline{235} / \underline{141} \Rightarrow 2491 \div 47=53$
(iii) $103823 \rightarrow \underline{94 / \underline{9823}} \rightarrow \underline{94 / 423} \Rightarrow 103823 \div 43=2209$
(iv) $146969 \rightarrow \underline{141 / 5969 \rightarrow \underline{47 / 1269} \rightarrow \underline{94} / \underline{329} \Rightarrow 146969 \div 47=3127}$
(v) $305453 \rightarrow \underline{282} / 23453 \rightarrow \underline{188 / 4653} \rightarrow \underline{423 / 423} \Rightarrow 305453 \div 47=6499$
(vi) $8965109 \rightarrow \underline{47 / 4265109 \rightarrow \underline{423 / 35109 ~} \rightarrow \underline{329 / 2209} \rightarrow \underline{188 / 329}}$
$\Rightarrow 8965109 \div 47=190747$
Note; (i) The only single digit number divisible by 47 is 0 .
(ii) $470 \rightarrow \underline{47} \underline{0} \Rightarrow 470 \div 47=10$
(iii) $14100 \rightarrow \underline{141 / 00} \Rightarrow 14100 \div 47=300$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 or 47) by 53, memorize/write the first nine multiples of 31 by applying the new method of writing times table, namely $53,106,159,212,265,318,371,424,477$. Counting from the left - hand side, the nearest multiple of 53 which is less than or equal to the number on the left - hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 53, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 53 , then the number is divisible by 53, otherwise not.
Illustrations;
(i) $2809 \rightarrow \underline{265} / \underline{159} \Rightarrow 2809 \div 53=53$
(ii) $3127 \rightarrow \underline{265} / \underline{477} \Rightarrow 3127 \div 53=59$
(iii) $5141 \rightarrow \underline{477} \underline{371} \Rightarrow 5141 \div 53=97$
(iv) $148877 \rightarrow \underline{106 / 42877} \rightarrow \underline{424 / 477} \Rightarrow 148877 \div 53=2809$
(v) $190747 \rightarrow \underline{159 / 31747 \rightarrow \underline{265} / 5247 \rightarrow \underline{477} / \underline{477} \Rightarrow 190747 \div 53=3599 ~}$
(vi) $252121 \rightarrow \underline{212} / 40121 \rightarrow \underline{371} / 3021 \rightarrow \underline{265} / \underline{771} \Rightarrow 252121 \div 53=4757$
(vii) $12780049 \rightarrow \underline{106 / 2180049 ~} \rightarrow \underline{212 / 60049} \rightarrow \underline{53 / 7049} \rightarrow \underline{53 / 1749} \rightarrow \underline{159} / \underline{159}$

$$
\Rightarrow 12780049 \div 53=241133
$$

Note; (i) The only single digit number divisible by 53 is 0 .
(ii) $1060 \rightarrow \underline{106 / 0} \Rightarrow 1060 \div 53=20$
(iii) $15900 \rightarrow \underline{159} \underline{00} \Rightarrow 15900 \div 53=300$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47 or 53) by 59, memorize/write the first nine multiples of 59 by applying the new method of writing times table, namely $59,118,177,236,295,354,413,472,531$. Counting from the left - hand side, the nearest multiple of 59 which is less than or equal to the number on the left - hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 59, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 59 , then the number is divisible by 59 , otherwise not. Illustrations;
(i) $3481 \rightarrow \underline{295} / \underline{531} \Rightarrow 3481 \div 59=59$
(ii) $5723 \rightarrow \underline{531 / 413} \Rightarrow 5723 \div 59=97$
(iii) $205379 \rightarrow \underline{177 / 28379} \rightarrow \underline{236} / 4779 \rightarrow \underline{472 / 59} \underline{205379} \div 59=3481$
(iv) $241133 \rightarrow \underline{236} / 5133 \rightarrow \underline{472 / 413} \Rightarrow 241133 \div 59=4087$
(v) $509347 \rightarrow \underline{472 / 37347} \rightarrow \underline{354} / 1947 \rightarrow \underline{177} / \underline{177} \Rightarrow 509347 \div 59=8633$
(vi) $17120443 \rightarrow \underline{118 / 5320443} \rightarrow \underline{531 / 10443} \rightarrow \underline{59 / 4543} \rightarrow \underline{413 / 413}$
$\Rightarrow 17120443 \div 59=290177$

Note; (i) The only single digit number divisible by 59 is 0 .
(ii) $1180 \rightarrow \underline{118 / 0} \Rightarrow 1180 \div 59=20$
(iii) $17700 \rightarrow \underline{177} \underline{00} \Rightarrow 17700 \div 59=300$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53 or 59) by 61, memorize/write the first nine multiples of 61 by applying the new method of writing times table, namely 61, 122, 183,244, 305, 366, 427, 488, 549. Counting from the left hand side, the nearest multiple of 61 which is less than or equal to the number on the left - hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 61, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 61, then the number is divisible by 61, otherwise not. Illustrations;
(i) $3721 \rightarrow \underline{366} / \underline{61} \Rightarrow 3721 \div 61=61$
(ii) $5429 \rightarrow \underline{488} / \underline{549} \Rightarrow 5429 \div 61=89$
(iii) $226981 \rightarrow \underline{183 / 43981} \rightarrow \underline{427} / 1281 \rightarrow \underline{122} / \underline{61} \Rightarrow 22698 \div 61=3721$
(iv) $290177 \rightarrow \underline{244 / 46177 \rightarrow \underline{427} / 4277 \rightarrow \underline{305 / 427} \Rightarrow 290177 \div 61=4757}$
(v) $351787 \rightarrow \underline{305 / 46787} \rightarrow \underline{427 / 4687} \rightarrow \underline{366 / 427} \Rightarrow 351787 \div 61=5767$

$\Rightarrow 28147169 \div 61=461429$
Note; (i) The only single digit number divisible by 61 is 0 .
(ii) $1220 \rightarrow \underline{122 / 0} \Rightarrow 1220 \div 61=20$
(iii) $18300 \rightarrow \underline{183} / \underline{00} \Rightarrow 18300 \div 61=300$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, $41,47,53,59$ or 61) by 67 , memorize/write the first nine multiples of 67 by applying the new method of writing times table, namely 67, 134, 201, 268, 335, 402, 469, 536, 603. Counting from the left hand side, the nearest multiple of 67 which is less than or equal to the number on the left - hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 67, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 67, then the number is divisible by 67, otherwise not. Illustrations;
(i) $4489 \rightarrow \underline{402 / 469} \Rightarrow 4489 \div 67=67$
(ii) $6499 \rightarrow \underline{603} / \underline{469} \Rightarrow 6499 \div 67=97$
(iii) $3000763 \rightarrow \underline{268 / 432763} \rightarrow \underline{268 / 5963} \rightarrow \underline{536} / \underline{603} \Rightarrow 300763 \div 67=4489$
(iv) $347261 \rightarrow \underline{335} / 12261 \rightarrow \underline{67 / 5561} \rightarrow \underline{536 / \underline{201} \Rightarrow 347261 \div 67=5183}$
(v) $439319 \rightarrow \underline{402 / 37319 \rightarrow \underline{335} / 3819 \rightarrow \underline{335 / 469} \Rightarrow 439319 \div 67=6557}$
 $\Rightarrow 27433619 \div 67=409457$
Note; (i) The only single digit number divisible by 67 is 0 .
(ii) $1340 \rightarrow \underline{134} / \underline{0} \Rightarrow 1340 \div 67=20$
(iii) $20100 \rightarrow \underline{201} \underline{00} \Rightarrow 20100 \div 67=300$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, $41,47,53,59,61$ or 67) by 71, memorize/write the first nine multiples of 71 by applying the new method of writing times table, namely 71, 142, 213, 284, 355, 426, 497, 568, 639. Counting from the left - hand side, the nearest multiple of 71 which is less than or equal to the number on the left - hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 71, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 71, then the number is divisible by 71, otherwise not. Illustrations;
(i) $5041 \rightarrow \underline{497} \underline{71} \Rightarrow 5041 \div 71=71$
(ii) $6319 \rightarrow \underline{568 / 639} \Rightarrow 6319 \div 71=89$
(iii) $357911 \rightarrow \underline{355} / 2911 \rightarrow \underline{284} / \underline{11} \Rightarrow 357911 \div 71=5041$
(iv) $409457 \rightarrow \underline{355} / 54457 \rightarrow \underline{497 / 4757 \rightarrow \underline{426 /} \underline{497} \Rightarrow 409457 \div 71=5767}$
(v) $524477 \rightarrow \underline{497} / 27477 \rightarrow \underline{213} / 6177 \rightarrow \underline{568 / 497} \Rightarrow 524477 \div 71=7387$
(vii) $33984931 \rightarrow \underline{284 / 5584931 ~} \rightarrow \underline{497 / 614931} \rightarrow \underline{568 / 46931} \rightarrow \underline{426} / \underline{4331} \rightarrow \underline{426 / 71}$

$$
\Rightarrow 33984931 \div 71=478661
$$

Note; (i) The only single digit number divisible by 71 is 0 .
(ii) $1420 \rightarrow \underline{142} / \underline{0} \Rightarrow 1420 \div 71=20$
(iii) $21300 \rightarrow \underline{213} / \underline{00} \Rightarrow 21300 \div 71=300$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 61, 67 or 71) by 73, memorize/write the first nine multiples of 73 by applying the new method of writing times table, namely 73, 146, 219, 292, 365, 438, 511, 584, 657. Counting from the left - hand side, the nearest multiple of 73 which is less than or equal to the number on the left - hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 73, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 73 , then the number is divisible by 73 , otherwise not. Illustrations;
(i) $5329 \rightarrow \underline{511 / 219} \Rightarrow 5329 \div 73=73$
(ii) $6497 \rightarrow \underline{584 / 657} \Rightarrow 6497 \div 73=89$
(iii) $389017 \rightarrow \underline{365 / 24017 \rightarrow \underline{219} / 2117 \rightarrow \underline{146}} \underline{\underline{657}} \Rightarrow 389017 \div 73=5329$
(iv) $478661 \rightarrow 4 \underline{38 / 40661} \rightarrow \underline{365 / 4161} \rightarrow \underline{365 / 511} \Rightarrow 478661 \div 73=6557$
(v) $539251 \rightarrow \underline{511 / 28251} \rightarrow \underline{219} / 6351 \rightarrow \underline{584} / \underline{511} \Rightarrow 539251 \div 73=7387$
(viii) $42600829 \rightarrow \underline{365 / 6100829 ~} \rightarrow \underline{584 / 260829 \rightarrow \underline{219} / 41829 \rightarrow \underline{365 / 5329} \rightarrow \underline{511} / \underline{219}}$

$$
\Rightarrow 42600829 \div 73=583573
$$

Note; (i) The only single digit number divisible by 73 is 0 .
(ii) $1460 \rightarrow \underline{146} / \underline{0} \Rightarrow 1460 \div 73=20$
(iii) $21900 \rightarrow \underline{219} \underline{00} \Rightarrow 21900 \div 73=300$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, $41,47,53,59,61,67,71$ or 73) by 79, memorize/write the first nine multiples of 79 by applying the new method of writing times table, namely 79, 158, 237, 316, 395, 474, 553, 632, 711. Counting from the left - hand side, the nearest multiple of 79 which is less than or equal to the number on the left hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 79, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 79, then the number is divisible by 79, otherwise not. Illustrations;
(i) $6241 \rightarrow \underline{553 / 711} \Rightarrow 6241 \div 79=79$
(ii) $7663 \rightarrow \underline{711 / 553} \Rightarrow 7663 \div 79=97$
(iii) $493039 \rightarrow \underline{474 / 19039 \rightarrow \underline{158} / 3239 \rightarrow \underline{316}} \underline{79} \Rightarrow 493039 \div 79=6241$
(iv) $583573 \rightarrow \underline{553} / 30573 \rightarrow \underline{237} / 6873 \rightarrow \underline{632} \underline{553} \Rightarrow 583573 \div 79=7387$
(v) $682007 \rightarrow \underline{632 / 50007} \rightarrow \underline{474 / 260} \rightarrow \underline{237} / \underline{237} \Rightarrow 682007 \div 79=8633$
(vi) $56606581 \rightarrow \underline{553 / 1306581 ~} \rightarrow \underline{79} / 516581 \rightarrow \underline{474 / 42581} \rightarrow \underline{395 / 3081} \rightarrow \underline{237 / 711}$ $\Rightarrow 56606581 \div 79=716539$

Note; (i) The only single digit number divisible by 79 is 0 .
(ii) $1580 \rightarrow \underline{158} / \underline{0} \Rightarrow 1580 \div 79=20$
(iii) $23700 \rightarrow \underline{237} \underline{00} \Rightarrow 23700 \div 79=300$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, $37,41,47,53,59,61,67,71,73$ or 79) by 83 , memorize/write the first nine multiples of 83 by applying the new method of writing times table, namely 83, 166, 249, 332, 415, 498, 581, 664, 747. Counting from the left - hand side, the nearest multiple of 83 which is less than or equal to the number on the left - hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 83, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 83 , then the number is divisible by 83, otherwise not. Illustrations;
(i) $6889 \rightarrow \underline{664 / \underline{249} \Rightarrow 6889 \div 83=83}$
(ii) $7663 \rightarrow \underline{664 / 747} \Rightarrow 7387 \div 83=89$
(iii) $571787 \rightarrow \underline{498 /} 73787 \rightarrow \underline{664 / 7387} \rightarrow \underline{664 / 747} \Rightarrow 571787 \div 83=6889$
(iv) $672217 \rightarrow \underline{664 / 8217 \rightarrow \underline{747} / 747} \Rightarrow 672217 \div 83=8099$
(v) $55794011 \rightarrow \underline{498 / 5994011 ~} \rightarrow \underline{581 / 184011} \rightarrow \underline{166 / 18011} \rightarrow \underline{166 / 1411} \rightarrow \underline{83 / 581}$
$\Rightarrow 55794011 \div 83=672217$
(vi) $59827313 \rightarrow \underline{581 / 1727313} \rightarrow \underline{166} / 67313 \rightarrow \underline{664 / 913} \rightarrow \underline{83 / 83}$
$\Rightarrow 59827313 \div 83=720811$

Note; (i) The only single digit number divisible by 83 is 0 .
(ii) $1660 \rightarrow \underline{166} / \underline{0} \Rightarrow 1660 \div 83=20$
(iii) $24900 \rightarrow \underline{249} / \underline{00} \Rightarrow 24900 \div 83=300$

To test the divisibility of a number (which is not divisible by $2,3,5,7,11,13,17,19,23,29$, $31,37,41,47,53,59,61,67,71,73,79$ or 83) by 89 , memorize/write the first nine multiples of 89 by applying the new method of writing times table, namely $89,178,267,356,445,534,623,712,801$.

Counting from the left - hand side, the nearest multiple of 89 which is less than or equal to the number on the left - hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 89 , then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 89 , then the number is divisible by 89, otherwise not. Illustrations;
(i) $7921 \rightarrow \underline{712} / \underline{801} \Rightarrow 7921 \div 89=89$
(ii) $8663 \rightarrow \underline{801} \underline{623} \Rightarrow 8633 \div 89=97$
(iii) $704969 \rightarrow \underline{623 /} 81969 \rightarrow \underline{801} / 1869 \rightarrow \underline{178 / \underline{89}} \Rightarrow 704969 \div 89=7921$
(iv) $768337 \rightarrow \underline{712 / 56337} \rightarrow \underline{534 /} 2937 \rightarrow \underline{267} / \underline{267} \Rightarrow 768337 \div 89=8633$
(v) $837401 \rightarrow \underline{801 / 36401} \rightarrow \underline{356 / 801} \rightarrow \underline{166 / 18011} \rightarrow \underline{166 / 1411} \rightarrow \underline{83 / 581}$

$$
\Rightarrow 837401 \div 89=9409
$$

(vi) $74528689 \rightarrow \underline{712 / 3328689} \rightarrow \underline{267 /} 658689 \rightarrow \underline{623 / 35689} \rightarrow \underline{356 / 89}$ $\Rightarrow 74528689 \div 89=837401$

Note; (i) The only single digit number divisible by 89 is 0 .
(ii) $178 \rightarrow \underline{178} / \underline{0} \Rightarrow 1780 \div 89=20$
(iii) $26700 \rightarrow \underline{267} / \underline{00} \Rightarrow 24900 \div 89=300$

To test the divisibility of a number (which is not divisible by 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, $37,41,47,53,59,61,67,71,73,79,83$ or 89) by 97 , memorize/write the first nine multiples of 97 by applying the new method of writing times table, namely 97, 194, 291, 388, 485, 582, 679, 776, 873. Counting from the left - hand side, the nearest multiple of 97 which is less than or equal to the number on the left - hand side, write slash and then write the difference along with the remaining unaffected digit(s). In case, the remainder with the next digit is less than 97, then insert 0 in the quotient. The same process is repeated and if the last number is 0 or multiple of 97 , then the number is divisible by 97, otherwise not. Illustrations;
(i) $9409 \rightarrow \underline{873 / 679} \Rightarrow 9409 \div 97=97$
(ii) $912673 \rightarrow \underline{873 / 39673} \rightarrow \underline{388 / 873}$

$$
\Rightarrow 912673 \div 97=9409
$$

(iii) $88529281 \rightarrow 873 / 1229281 \rightarrow \underline{97 /} 259281 \rightarrow \underline{194 / 65281} \rightarrow \underline{582 / 7081} \rightarrow \underline{679} / \underline{291}$

$$
\Rightarrow 88529281 \div 97=912673
$$

Note; (i) The only single digit number divisible by 97 is 0 .
(ii) $194 \rightarrow \underline{194 / \underline{0} \Rightarrow 1940 \div 97=20}$
(iii) $29100 \rightarrow \underline{291} / \underline{00} \Rightarrow 29100 \div 97=300$
(iv) 0 is divisible by any prime number.

Proof: By using Euclid's Division Lemma, for any two non-negative integers a \& b, we have, $a=b q+r---(i)$, where $b<r \leq 0$ and $b \neq 0$.

Now, for $\mathrm{a}=0$, we have

$$
0=\mathrm{bq}+\mathrm{r} \text {----- (ii) }
$$

$$
\begin{equation*}
\text { But } 0=\mathrm{b} \times 0+0- \tag{iii}
\end{equation*}
$$

Comparing (ii) \& (iii), we have
$\mathrm{q}=0$ and $\mathrm{r}=0$
\therefore from (i), we have
$0=\mathrm{bx} 0+0$
$\Rightarrow 0=b \times 0$
$\Rightarrow 0$ is divisible by b (which is a non-negative integer) and the quotient $=0$.
$\Rightarrow 0$ is divisible by any prime number (Since the set of prime numbers is the proper subset of the set of non-negative integers).
(j) Multiples: The multiples of a number are the products of the number and the natural numbers. e.g. (i) The multiples of 6 are $6,12,18,24,30,36,42,48,54,60,72, \ldots$
(ii) The multiples of 8 are $8,16,24,32,40,48,56,64,72,80,88,96, \ldots$
(k) Prime factor(s): Prime factor (s) of a number is/are factor (s) of the number which is/are prime. e.g. (i) The prime factors of 6 are $2,3$.
(ii) The prime factors of 28 are 2,7 .
(l) Applications of Prime Factorization Method.

Illustrations; (i) Find the LCM and HCF of (a) 24 and 90 (b)18, 24 and 72
Sol: (a) $24=2 \times 2 \times 2 \times 3$
$90=2 \times 3 \times 3 \times 5$
LCM $=2 \times 2 \times 2 \times 3 \times 3 \times 5=360$
$\mathrm{HCF}=2 \times 3=6$

2	24
2	12
2	6
	3

2	90
3	45
3	15
	5

(b) $18=2 \times 3 \times 3$
$24=2 \times 2 \times 2 \times 3$
$74=2 \times 2 \times 2 \times 3 \times 3$
LCM $=2 \times 2 \times 2 \times 3 \times 3=72$

2	24
2	12
2	6
	3

2	72
2	36
2	18
3	9
	3

(ii) Find the quotient of
$\begin{array}{ll}\text { (a) } 1254 \div 114 & \text { (b) } 11165 \div 1595\end{array}$
Soln: (a) $1254 \div 114=\frac{1254}{114}=\frac{2 \times 3 \times 11 \times 19}{2 \times 3 \times 19}=11$

2	1254
3	627
11	209
	19

2	114
3	57
	19

(b) $11165 \div 1595=\frac{11165}{1595}=\frac{5 \times 7 \times 11 \times 29}{5 \times 11 \times 29}=7$

5	11165
7	2233
11	319
	29

5	1595
11	319
	29

(iii) Find the square root of
(a) 36
(b) 4489

Soln: (a) $36=2 \times 2 \times 3 \times 3$

$$
=2^{2} \times 3^{2}
$$

$\therefore \sqrt{36}=2 \times 3=6$

2	36
2	18
3	9
	3

(b) $4489=67 \times 67=67^{2}$
$\therefore \sqrt{4489}=67$

$$
\begin{array}{l|r}
67 & 4489 \\
\hline & 67
\end{array}
$$

(iv) Find the cube root of (a) 343 (b) 103823

Soln: (a) $343=7 \times 7 \times 7=7^{3}$

$$
\therefore \sqrt[3]{343}=7
$$

(b) $103823=47 \times 47 \times 47=47^{3}$
$\therefore \sqrt[3]{103823}=47$

7	342
7	49
	7

47	103823
47	2209
	47

(m) Teach the students how to find LCM and HCF of two and three numbers by applying division method.
Illustrations; By applying Division Method, find the LCM and HCF of the numbers;
(a) 36 and 108 (b) 33, 99, 121

Sol; (a) $L C M=2 \times 2 \times 3 \times 3 \times 3=108$
$H C F=36$

2	36,108
2	18,54
3	9,27
3	3,9
	1,3

36)108(3
$\frac{108}{0}$
(b) $L C M=3 \times 3 \times 11 \times 11=1089$ $H C F=11$

3	$33,99,121$	$99) 121(1$		
11	$11,33,11$			
	$1,3,11$		\quad	$\underline{99}$
:---:				
$22) 99(4$				

$$
\underline{88}
$$

11)22(2
$\underline{22}$ 0

Annexure-1: Arabic numerals from 0 to 9

0													

ANNEXURE-2:Cursive writing on four lined copy
a b c de f g
$h \quad i \quad j$ k l m
o p q r s $t u$
v w x y z
$A B \subset \quad D \quad \xi \quad 7 \quad l$
\# I f \quad K L M N
O P Q R \& J U
y $w \quad x \quad y \quad z$
Ha Bb Cc Dd Ge Ff log Th Ii $_{i}$ Jj Mk $_{j}$ Le Mm An Oo Ph Qq, Rr Ss It Nu The New Xxx Yo zzz

ANNEXURE - 3

PRACTICE FORMAT: COLUMN METHOD OF ADDITION

(a)			19	39		59
	+0	+ 1	+2	+ 3	+ 5	+ 8
	8	8	8	18	28	38
	+0	+1	+2	+3	+ 5	+7
	7	7	7	7	27	37
	+0	+1	+ 2	+3	+4	+6
	6	6	6	6	6	26
	+0	+1	+2	+3	+ 4	+ 5
(b)	67	79	689			
	+92	+68	$\begin{array}{r}\text { + } 798 \\ \hline\end{array}$			
(c)	67	69	456			
	89	88	783			
	$\begin{array}{r}+78 \\ \hline\end{array}$	$\begin{array}{r}\text { + } 79 \\ \hline\end{array}$	$\begin{array}{r}\text { + } \\ +\quad 789 \\ \hline\end{array}$			
(d)	67	56	456			
	89	89	987			
	56	89	987			
	$\begin{array}{r}\text { + } \\ + \\ \hline\end{array}$	$\begin{array}{r}\text { a } \\ +\quad 89 \\ \hline\end{array}$	+987			

ANNEXURE - 4

PRACTICE FORMAT OF HORZONTAL METHOD OF ADDITION

HORIZONTAL METHOD OF ADDITION

(a) $9+6+6=$
) (b) $6+7+7=$
(c) $6+7+8=($
) (d) $6+8+8=$
(e) $7+8+9=$
) (f) $7+9+9=$
(g) $17+8+8+8=$
(h) $26+9+9+9=$
(
(e) $7+8+9=$ (
(i) $49+7+8+9=$
(j) $59+8+8+8+8=$
(k) $65+9+9+9+9=$
(l) $77+9+9+9+9+9+9=($
(m) $88+9+9+9+9+9+9+9=$
(n) $34+8+8+8=$
(o) $84+7+7+7+7+7+7+7=$
(p) $83+9+9+9+9+9+9+9+9+9=$
(q) $47+8+8+8+8+8+8+8+8=$
(r) $59+7+7+7+7+7+7+7+7=$
(s) $53+6+6+6+6+6=$
(t) $59+6+7+8+9=$
(u) $59+8+8+8+9+9+9=$
(v) $56+67=$ (
(w) $78+98=$
(x) $456+789=$
(y) $678+956+789=$
(z) $893+456+789=$

Annexure 5
TIMES TABLE FROM 1 TO 100

$1 \times 1=1$	$2 \times 1=2$	$3 \times 1=3$	$4 \times 1=4$	$5 \times 1=5$
$1 \times 2=2$	$2 \times 2=4$	$3 \times 2=6$	$4 \times 2=8$	$5 \times 2=10$
$1 \times 3=3$	$2 \times 3=6$	$3 \times 3=9$	$4 \times 3=12$	$5 \times 3=15$
$1 \times 4=4$	$2 \times 4=8$	$3 \times 4=12$	$4 \times 4=16$	$5 \times 4=20$
$1 \times 5=5$	$2 \times 5=10$	$3 \times 5=15$	$4 \times 5=20$	$5 \times 5=25$
$1 \times 6=6$	$2 \times 6=12$	$3 \times 6=18$	$4 \times 6=24$	$5 \times 6=30$
$1 \times 7=7$	$2 \times 7=14$	$3 \times 7=21$	$4 \times 7=28$	$5 \times 7=35$
$1 \times 8=8$	$2 \times 8=16$	$3 \times 8=24$	$4 \times 8=32$	$5 \times 8=40$
$1 \times 9=9$	$2 \times 9=18$	$3 \times 9=27$	$4 \times 9=36$	$5 \times 9=45$
$1 \times 10=10$	$2 \times 10=20$	$3 \times 10=30$	$4 \times 10=40$	$5 \times 10=50$
$6 \times 1=6$	$7 \times 1=7$	$8 \times 1=8$	$9 \times 1=9$	$10 \times 1=10$
$6 \times 2=12$	$7 \times 2=14$	$8 \times 2=16$	$9 \times 2=18$	$10 \times 2=20$
$6 \times 3=18$	$7 \times 3=21$	$8 \times 3=24$	$9 \times 3=27$	$10 \times 3=30$
$6 \times 4=24$	$7 \times 4=28$	$8 \times 4=32$	$9 \times 4=36$	$10 \times 4=40$
$6 \times 5=30$	$7 \times 5=35$	$8 \times 5=40$	$9 \times 5=45$	$10 \times 5=50$
$6 \times 6=36$	$7 \times 6=42$	$8 \times 6=48$	$9 \times 6=54$	$10 \times 6=60$
$6 \times 7=42$	$7 \times 7=49$	$8 \times 7=56$	$9 \times 7=63$	$10 \times 7=70$
$6 \times 8=48$	$7 \times 8=56$	$8 \times 8=64$	$9 \times 8=72$	$10 \times 8=80$
$6 \times 9=54$	$7 \times 9=63$	$8 \times 9=72$	$9 \times 9=81$	$10 \times 9=90$
$6 \times 10=60$	$7 \times 10=70$	$8 \times 10=80$	$9 \times 10=90$	$10 \times 10=100$
$11 \times 1=11$	$12 \times 1=12$	$13 \times 1=13$	$14 \times 1=14$	$15 \times 1=15$
$11 \times 2=22$	$12 \times 2=24$	$13 \times 2=26$	$14 \times 2=28$	$15 \times 2=30$
$11 \times 3=33$	$12 \times 3=36$	$13 \times 3=39$	$14 \times 3=42$	$15 \times 3=45$
$11 \times 4=44$	$12 \times 4=48$	$13 \times 4=52$	$14 \times 4=56$	$15 \times 4=60$
$11 \times 5=55$	$12 \times 5=60$	$13 \times 5=65$	$14 \times 5=70$	$15 \times 5=75$
$11 \times 6=66$	$12 \times 6=72$	$13 \times 6=78$	$14 \times 6=84$	$15 \times 6=90$
$11 \times 7=77$	$12 \times 7=84$	$13 \times 7=91$	$14 \times 7=98$	$15 \times 7=105$
$11 \times 8=88$	$12 \times 8=96$	$13 \times 8=104$	$14 \times 8=112$	$15 \times 8=120$
$11 \times 9=99$	$12 \times 9=108$	$13 \times 9=117$	$14 \times 9=126$	$15 \times 9=135$
$11 \times 10=110$	$12 \times 10=120$	$13 \times 10=130$	$14 \times 10=140$	$15 \times 10=150$
$16 \times 1=16$	$17 \times 1=17$	$18 \times 1=18$	$19 \times 1=19$	$20 \times 1=20$
$16 \times 2=32$	$17 \times 2=34$	$18 \times 2=36$	$19 \times 2=38$	$20 \times 2=40$
$16 \times 3=48$	$17 \times 3=51$	$18 \times 3=54$	$19 \times 3=57$	$20 \times 3=60$
$16 \times 4=64$	$17 \times 4=68$	$18 \times 4=72$	$19 \times 4=76$	$20 \times 4=80$
$16 \times 5=80$	$17 \times 5=85$	$18 \times 5=90$	$19 \times 5=95$	$20 \times 5=100$
$16 \times 6=96$	$17 \times 6=102$	$18 \times 6=108$	$19 \times 6=114$	$20 \times 6=120$
$16 \times 7=112$	$17 \times 7=119$	$18 \times 7=126$	$19 \times 7=133$	$20 \times 7=140$
$16 \times 8=128$	$17 \times 8=136$	$18 \times 8=144$	$19 \times 8=152$	$20 \times 8=160$
$16 \times 9=144$	$17 \times 9=153$	$18 \times 9=162$	$19 \times 9=171$	$20 \times 9=180$
$16 \times 10=160$	$17 \times 10=170$	$18 \times 10=180$	$19 \times 10=190$	$20 \times 10=200$

$21 \times 1=21$	$22 \times 1=22$	$23 \times 1=23$	$24 \times 1=24$	$25 \times 1=25$
$21 \times 2=42$	$22 \times 2=44$	$23 \times 2=46$	$24 \times 2=48$	$25 \times 2=50$
$21 \times 3=63$	$22 \times 3=66$	$23 \times 3=69$	$24 \times 3=72$	$25 \times 3=75$
$21 \times 4=84$	$22 \times 4=88$	$23 \times 4=92$	$24 \times 4=96$	$25 \times 4=100$
$21 \times 5=105$	$22 \times 5=110$	$23 \times 5=115$	$24 \times 5=120$	$25 \times 5=125$
$21 \times 6=126$	$22 \times 6=132$	$23 \times 6=138$	$24 \times 6=144$	$25 \times 6=150$
$21 \times 7=147$	$22 \times 7=154$	$23 \times 7=161$	$24 \times 7=168$	$25 \times 7=175$
$21 \times 8=168$	$22 \times 8=176$	$23 \times 8=184$	$24 \times 8=192$	$25 \times 8=200$
$21 \times 9=189$	$22 \times 9=198$	$23 \times 9=207$	$24 \times 9=216$	$25 \times 9=225$
$21 \times 10=210$	$22 \times 10=220$	$23 \times 10=230$	$24 \times 10=240$	$25 \times 10=250$
$26 \times 1=26$	$27 \times 1=27$	$28 \times 1=28$	$29 \times 1=29$	$30 \times 1=30$
$26 \times 2=52$	$27 \times 2=54$	$28 \times 2=56$	$29 \times 2=58$	$30 \times 2=60$
$26 \times 3=78$	$27 \times 3=81$	$28 \times 3=84$	$29 \times 3=87$	$30 \times 3=90$
$26 \times 4=104$	$27 \times 4=108$	$28 \times 4=112$	$29 \times 4=116$	$30 \times 4=120$
$26 \times 5=130$	$27 \times 5=135$	$28 \times 5=140$	$29 \times 5=145$	$30 \times 5=150$
$26 \times 6=156$	$27 \times 6=162$	$28 \times 6=168$	$29 \times 6=174$	$30 \times 6=180$
$26 \times 7=182$	$27 \times 7=189$	$28 \times 7=196$	$29 \times 7=203$	$30 \times 7=210$
$26 \times 8=208$	$27 \times 8=216$	$28 \times 8=224$	$29 \times 8=232$	$30 \times 8=240$
$26 \times 9=234$	$27 \times 9=243$	$28 \times 9=252$	$29 \times 9=261$	$30 \times 9=270$
$26 \times 10=260$	$27 \times 10=270$	$28 \times 10=280$	$29 \times 10=290$	$30 \times 10=300$
$31 \times 1=31$	$32 \times 1=32$	$33 \times 1=33$	$34 \times 1=34$	$35 \times 1=35$
$31 \times 2=62$	$32 \times 2=64$	$33 \times 2=66$	$34 \times 2=68$	$35 \times 2=70$
$31 \times 3=93$	$32 \times 3=96$	$33 \times 3=99$	$34 \times 3=102$	$35 \times 3=105$
$31 \times 4=124$	$32 \times 4=128$	$33 \times 4=132$	$34 \times 4=136$	$35 \times 4=140$
$31 \times 5=155$	$32 \times 5=160$	$33 \times 5=165$	$34 \times 5=170$	$35 \times 5=175$
$31 \times 6=186$	$32 \times 6=192$	$33 \times 6=198$	$34 \times 6=204$	$35 \times 6=210$
$31 \times 7=217$	$32 \times 7=224$	$33 \times 7=231$	$34 \times 7=238$	$35 \times 7=245$
$31 \times 8=248$	$32 \times 8=256$	$33 \times 8=264$	$34 \times 8=272$	$35 \times 8=280$
$31 \times 9=279$	$32 \times 9=288$	$33 \times 9=297$	$34 \times 9=306$	$35 \times 9=315$
$31 \times 10=310$	$32 \times 10=320$	$33 \times 10=330$	$34 \times 10=340$	$35 \times 10=350$
$36 \times 1=36$	$37 \times 1=37$	$38 \times 1=38$	$39 \times 1=39$	$40 \times 1=40$
$36 \times 2=72$	$37 \times 2=74$	$38 \times 2=76$	$39 \times 2=78$	$40 \times 2=80$
$36 \times 3=108$	$37 \times 3=111$	$38 \times 3=114$	$39 \times 3=117$	$40 \times 3=120$
$36 \times 4=144$	$37 \times 4=148$	$38 \times 4=152$	$39 \times 4=156$	$40 \times 4=160$
$36 \times 5=180$	$37 \times 5=185$	$38 \times 5=190$	$39 \times 5=195$	$40 \times 5=200$
$36 \times 6=216$	$37 \times 6=222$	$38 \times 6=228$	$39 \times 6=234$	$40 \times 6=240$
$36 \times 7=252$	$37 \times 7=259$	$38 \times 7=266$	$39 \times 7=273$	$40 \times 7=280$
$36 \times 8=288$	$37 \times 8=296$	$38 \times 8=304$	$39 \times 8=312$	$40 \times 8=320$
$36 \times 9=324$	$37 \times 9=333$	$38 \times 9=342$	$39 \times 9=351$	$40 \times 9=360$
$36 \times 10=360$	$37 \times 10=370$	$38 \times 10=380$	$39 \times 10=390$	$40 \times 10=400$

$41 \times 1=41$	$42 \times 1=42$	$43 \times 1=43$	$44 \times 1=44$	$45 \times 1=45$
$41 \times 2=82$	$42 \times 2=84$	$43 \times 2=86$	$44 \times 2=88$	$45 \times 2=90$
$41 \times 3=123$	$42 \times 3=126$	$43 \times 3=129$	$44 \times 3=132$	$45 \times 3=135$
$41 \times 4=164$	$42 \times 4=168$	$43 \times 4=172$	$44 \times 4=176$	$45 \times 4=180$
$41 \times 5=205$	$42 \times 5=210$	$43 \times 5=215$	$44 \times 5=220$	$45 \times 5=225$
$41 \times 6=246$	$42 \times 6=252$	$43 \times 6=258$	$44 \times 6=264$	$45 \times 6=270$
$41 \times 7=287$	$42 \times 7=294$	$43 \times 7=301$	$44 \times 7=308$	$45 \times 7=315$
$41 \times 8=328$	$42 \times 8=336$	$43 \times 8=344$	$44 \times 8=352$	$45 \times 8=360$
$41 \times 9=369$	$42 \times 9=378$	$43 \times 9=387$	$44 \times 9=396$	$45 \times 9=405$
$41 \times 10=410$	$42 \times 10=420$	$43 \times 10=430$	$44 \times 10=440$	$45 \times 10=450$
$46 \times 1=46$	$47 \times 1=47$	$48 \times 1=48$	$49 \times 1=49$	$50 \times 1=50$
$46 \times 2=92$	$47 \times 2=94$	$48 \times 2=96$	$49 \times 2=98$	$50 \times 2=100$
$46 \times 3=138$	$47 \times 3=141$	$48 \times 3=144$	$49 \times 3=147$	$50 \times 3=150$
$46 \times 4=184$	$47 \times 4=188$	$48 \times 4=192$	$49 \times 4=196$	$50 \times 4=200$
$46 \times 5=230$	$47 \times 5=235$	$48 \times 5=240$	$49 \times 5=245$	$50 \times 5=250$
$46 \times 6=276$	$47 \times 6=282$	$48 \times 6=288$	$49 \times 6=294$	$50 \times 6=300$
$46 \times 7=322$	$47 \times 7=329$	$48 \times 7=336$	$49 \times 7=343$	$50 \times 7=350$
$46 \times 8=368$	$47 \times 8=376$	$48 \times 8=384$	$49 \times 8=392$	$50 \times 8=400$
$46 \times 9=414$	$47 \times 9=423$	$48 \times 9=432$	$49 \times 9=441$	$50 \times 9=450$
$46 \times 10=460$	$47 \times 10=470$	$48 \times 10=480$	$49 \times 10=490$	$50 \times 10=500$
$51 \times 1=51$	$52 \times 1=52$	$53 \times 1=53$	$54 \times 1=54$	$55 \times 1=55$
$51 \times 2=102$	$52 \times 2=104$	$53 \times 2=106$	$54 \times 2=108$	$55 \times 2=110$
$51 \times 3=153$	$52 \times 3=156$	$53 \times 3=159$	$54 \times 3=162$	$55 \times 3=165$
$51 \times 4=204$	$52 \times 4=208$	$53 \times 4=212$	$54 \times 4=216$	$55 \times 4=220$
$51 \times 5=255$	$52 \times 5=260$	$53 \times 5=265$	$54 \times 5=270$	$55 \times 5=275$
$51 \times 6=306$	$52 \times 6=312$	$53 \times 6=318$	$54 \times 6=324$	$55 \times 6=330$
$51 \times 7=357$	$52 \times 7=364$	$53 \times 7=371$	$54 \times 7=378$	$55 \times 7=385$
$51 \times 8=408$	$52 \times 8=416$	$53 \times 8=424$	$54 \times 8=432$	$55 \times 8=440$
$51 \times 9=459$	$52 \times 9=468$	$53 \times 9=477$	$54 \times 9=486$	$55 \times 9=495$
$51 \times 10=510$	$52 \times 10=520$	$53 \times 10=530$	$54 \times 10=540$	$55 \times 10=550$
$56 \times 1=56$	$57 \times 1=57$	$58 \times 1=58$	$59 \times 1=59$	$60 \times 1=60$
$56 \times 2=112$	$57 \times 2=114$	$58 \times 2=116$	$59 \times 2=118$	$60 \times 2=120$
$56 \times 3=168$	$57 \times 3=171$	$58 \times 3=174$	$59 \times 3=177$	$60 \times 3=180$
$56 \times 4=224$	$57 \times 4=228$	$58 \times 4=232$	$59 \times 4=236$	$60 \times 4=240$
$56 \times 5=280$	$57 \times 5=285$	$58 \times 5=290$	$59 \times 5=295$	$60 \times 5=300$
$56 \times 6=336$	$57 \times 6=342$	$58 \times 6=348$	$59 \times 6=354$	$60 \times 6=360$
$56 \times 7=392$	$57 \times 7=399$	$58 \times 7=406$	$59 \times 7=413$	$60 \times 7=420$
$56 \times 8=448$	$57 \times 8=456$	$58 \times 8=464$	$59 \times 8=472$	$60 \times 8=480$
$56 \times 9=504$	$57 \times 9=513$	$58 \times 9=522$	$59 \times 9=531$	$60 \times 9=540$
$56 \times 10=560$	$57 \times 10=570$	$58 \times 10=580$	$59 \times 10=590$	$60 \times 10=600$

$61 \times 1=61$	$62 \times 1=62$	$63 \times 1=63$	$64 \times 1=64$	$65 \times 1=65$
$61 \times 2=122$	$62 \times 2=124$	$63 \times 2=126$	$64 \times 2=128$	$65 \times 2=130$
$61 \times 3=183$	$62 \times 3=186$	$63 \times 3=189$	$64 \times 3=192$	$65 \times 3=195$
$61 \times 4=244$	$62 \times 4=248$	$63 \times 4=252$	$64 \times 4=256$	$65 \times 4=260$
$61 \times 5=305$	$62 \times 5=310$	$63 \times 5=315$	$64 \times 5=320$	$65 \times 5=325$
$61 \times 6=366$	$62 \times 6=372$	$63 \times 6=378$	$64 \times 6=384$	$65 \times 6=390$
$61 \times 7=427$	$62 \times 7=434$	$63 \times 7=441$	$64 \times 7=448$	$65 \times 7=455$
$61 \times 8=488$	$62 \times 8=496$	$63 \times 8=504$	$64 \times 8=512$	$65 \times 8=520$
$61 \times 9=549$	$62 \times 9=558$	$63 \times 9=567$	$64 \times 9=576$	$65 \times 9=585$
$61 \times 10=610$	$62 \times 10=620$	$63 \times 10=630$	$64 \times 10=640$	$65 \times 10=650$
$66 \times 1=66$	$67 \times 1=67$	$68 \times 1=68$	$69 \times 1=69$	$70 \times 1=70$
$66 \times 2=132$	$67 \times 2=134$	$68 \times 2=136$	$69 \times 2=138$	$70 \times 2=140$
$66 \times 3=198$	$67 \times 3=201$	$68 \times 3=204$	$69 \times 3=207$	$70 \times 3=210$
$66 \times 4=264$	$67 \times 4=268$	$68 \times 4=272$	$69 \times 4=276$	$70 \times 4=280$
$66 \times 5=330$	$67 \times 5=335$	$68 \times 5=340$	$69 \times 5=345$	$70 \times 5=350$
$66 \times 6=396$	$67 \times 6=402$	$68 \times 6=408$	$69 \times 6=414$	$70 \times 6=420$
$66 \times 7=462$	$67 \times 7=469$	$68 \times 7=476$	$69 \times 7=483$	$70 \times 7=480$
$66 \times 8=528$	$67 \times 8=536$	$68 \times 8=544$	$69 \times 8=552$	$70 \times 8=560$
$66 \times 9=594$	$67 \times 9=603$	$68 \times 9=612$	$69 \times 9=621$	$70 \times 9=630$
$66 \times 10=660$	$67 \times 10=670$	$68 \times 10=680$	$69 \times 10=690$	$70 \times 10=700$
$71 \times 1=71$	$72 \times 1=72$	$73 \times 1=73$	$74 \times 1=74$	$75 \times 1=75$
$71 \times 2=142$	$72 \times 2=144$	$73 \times 2=146$	$74 \times 2=148$	$75 \times 2=150$
$71 \times 3=213$	$72 \times 3=216$	$73 \times 3=219$	$74 \times 3=222$	$75 \times 3=225$
$71 \times 4=284$	$72 \times 4=288$	$73 \times 4=292$	$74 \times 4=296$	$75 \times 4=300$
$71 \times 5=355$	$72 \times 5=360$	$73 \times 5=365$	$74 \times 5=370$	$75 \times 5=375$
$71 \times 6=426$	$72 \times 6=432$	$73 \times 6=438$	$74 \times 6=444$	$75 \times 6=450$
$71 \times 7=497$	$72 \times 7=504$	$73 \times 7=511$	$74 \times 7=518$	$75 \times 7=525$
$71 \times 8=568$	$72 \times 8=576$	$73 \times 8=584$	$74 \times 8=592$	$75 \times 8=600$
$71 \times 9=639$	$72 \times 9=648$	$73 \times 9=657$	$74 \times 9=666$	$75 \times 9=675$
$71 \times 10=710$	$72 \times 10=720$	$73 \times 10=730$	$74 \times 10=740$	$75 \times 10=750$
$76 \times 1=76$	$77 \times 1=77$	$78 \times 1=78$	$79 \times 1=79$	$80 \times 1=80$
$76 \times 2=152$	$77 \times 2=154$	$78 \times 2=156$	$79 \times 2=158$	$80 \times 2=160$
$76 \times 3=228$	$77 \times 3=231$	$78 \times 3=234$	$79 \times 3=237$	$80 \times 3=240$
$76 \times 4=304$	$77 \times 4=308$	$78 \times 4=312$	$79 \times 4=316$	$80 \times 4=320$
$76 \times 5=380$	$77 \times 5=385$	$78 \times 5=390$	$79 \times 5=395$	$80 \times 5=400$
$76 \times 6=456$	$77 \times 6=462$	$78 \times 6=468$	$79 \times 6=474$	$80 \times 6=480$
$76 \times 7=532$	$77 \times 7=539$	$78 \times 7=546$	$79 \times 7=553$	$80 \times 7=560$
$76 \times 8=608$	$77 \times 8=616$	$78 \times 8=624$	$79 \times 8=632$	$80 \times 8=640$
$76 \times 9=684$	$77 \times 9=693$	$78 \times 9=702$	$79 \times 9=711$	$80 \times 9=720$
$76 \times 10=760$	$77 \times 10=770$	$78 \times 10=780$	$79 \times 10=790$	$80 \times 10=800$

$81 \times 1=81$	$82 \times 1=82$	$83 \times 1=83$	$84 \times 1=84$	$85 \times 1=85$
$81 \times 2=162$	$82 \times 2=164$	$83 \times 2=166$	$84 \times 2=168$	$85 \times 2=170$
$81 \times 3=243$	$82 \times 3=246$	$83 \times 3=249$	$84 \times 3=252$	$85 \times 3=255$
$81 \times 4=324$	$82 \times 4=328$	$83 \times 4=332$	$84 \times 4=336$	$85 \times 4=340$
$81 \times 5=405$	$82 \times 5=410$	$83 \times 5=415$	$84 \times 5=420$	$85 \times 5=425$
$81 \times 6=486$	$82 \times 6=492$	$83 \times 6=498$	$84 \times 6=504$	$85 \times 6=510$
$81 \times 7=567$	$82 \times 7=574$	$83 \times 7=581$	$84 \times 7=588$	$85 \times 7=595$
$81 \times 8=648$	$82 \times 8=656$	$83 \times 8=664$	$84 \times 8=672$	$85 \times 8=680$
$81 \times 9=729$	$82 \times 9=738$	$83 \times 9=747$	$84 \times 9=756$	$85 \times 9=765$
$81 \times 10=810$	$82 \times 10=820$	$83 \times 10=830$	$84 \times 10=840$	$85 \times 10=850$
$86 \times 1=86$	$87 \times 1=87$	$88 \times 1=88$	$89 \times 1=89$	$90 \times 1=90$
$86 \times 2=172$	$87 \times 2=174$	$88 \times 2=176$	$89 \times 2=178$	$90 \times 2=180$
$86 \times 3=258$	$87 \times 3=261$	$88 \times 3=264$	$89 \times 3=267$	$90 \times 3=270$
$86 \times 4=344$	$87 \times 4=358$	$88 \times 4=352$	$89 \times 4=356$	$90 \times 4=360$
$86 \times 5=430$	$87 \times 5=435$	$88 \times 5=440$	$89 \times 5=445$	$90 \times 5=450$
$86 \times 6=516$	$87 \times 6=522$	$88 \times 6=528$	$89 \times 6=534$	$90 \times 6=540$
$86 \times 7=602$	$87 \times 7=609$	$88 \times 7=616$	$89 \times 7=623$	$90 \times 7=630$
$86 \times 8=288$	$87 \times 8=696$	$88 \times 8=704$	$89 \times 8=712$	$90 \times 8=720$
$86 \times 9=774$	$87 \times 9=783$	$88 \times 9=792$	$89 \times 9=801$	$90 \times 9=810$
$86 \times 10=860$	$87 \times 10=870$	$88 \times 10=880$	$89 \times 10=890$	$90 \times 10=900$
$91 \times 1=91$	$92 \times 1=92$	$93 \times 1=93$	$94 \times 1=94$	$95 \times 1=95$
$91 \times 2=182$	$92 \times 2=184$	$93 \times 2=186$	$94 \times 2=188$	$95 \times 2=190$
$91 \times 3=273$	$92 \times 3=276$	$93 \times 3=279$	$94 \times 3=282$	$95 \times 3=285$
$91 \times 4=364$	$92 \times 4=368$	$93 \times 4=372$	$94 \times 4=376$	$95 \times 4=380$
$91 \times 5=455$	$92 \times 5=460$	$93 \times 5=465$	$94 \times 5=470$	$95 \times 5=475$
$91 \times 6=546$	$92 \times 6=552$	$93 \times 6=558$	$94 \times 6=564$	$95 \times 6=570$
$91 \times 7=637$	$92 \times 7=644$	$93 \times 7=651$	$94 \times 7=658$	$95 \times 7=665$
$91 \times 8=728$	$92 \times 8=736$	$93 \times 8=744$	$94 \times 8=752$	$95 \times 8=760$
$91 \times 9=819$	$92 \times 9=828$	$93 \times 9=837$	$94 \times 9=846$	$95 \times 9=855$
$91 \times 10=910$	$92 \times 10=920$	$93 \times 10=930$	$94 \times 10=940$	$95 \times 10=950$
$96 \times 1=96$	$97 \times 1=97$	$98 \times 1=98$	$99 \times 1=99$	$100 \times 1=100$
$96 \times 2=192$	$97 \times 2=194$	$98 \times 2=196$	$99 \times 2=198$	$100 \times 2=200$
$96 \times 3=288$	$97 \times 3=291$	$98 \times 3=294$	$99 \times 3=297$	$100 \times 3=300$
$96 \times 4=384$	$97 \times 4=388$	$98 \times 4=392$	$99 \times 4=396$	$100 \times 4=400$
$96 \times 5=480$	$97 \times 5=485$	$98 \times 5=490$	$99 \times 5=495$	$100 \times 5=500$
$96 \times 6=576$	$97 \times 6=582$	$98 \times 6=588$	$90 \times 6=594$	$100 \times 6=600$
$96 \times 7=672$	$97 \times 7=579$	$98 \times 7=686$	$90 \times 7=693$	$100 \times 7=700$
$96 \times 8=768$	$97 \times 8=776$	$98 \times 8=784$	$90 \times 8=792$	$100 \times 8=800$
$96 \times 9=864$	$97 \times 9=873$	$98 \times 9=882$	$90 \times 9=891$	$100 \times 9=900$
$96 \times 10=960$	$97 \times 10=970$	$98 \times 10=980$	$90 \times 10=990$	$100 \times 10=1000$

TIMES TABLESPRACTICE FORMAT

$1 \times 1=$	$2 \times 1=$	$3 \times 1=$	$4 \times 1=$	$5 \times 1=$
$1 \times 2=$	$2 \times 2=$	$3 \times 2=$	$4 \times 2=$	$5 \times 2=$
$1 \times 3=$	$2 \times 3=$	$3 \times 3=$	$4 \times 3=$	$5 \times 3=$
$1 \times 4=$	$2 \times 4=$	$3 \times 4=$	$4 \times 4=$	$5 \times 4=$
$1 \times 5=$	$2 \times 5=$	$3 \times 5=$	$4 \times 5=$	$5 \times 5=$
$1 \times 6=$	$2 \times 6=$	$3 \times 6=$	$4 \times 6=$	$5 \times 6=$
$1 \times 7=$	$2 \times 7=$	$3 \times 7=$	$4 \times 7=$	$5 \times 7=$
$1 \times 8=$	$2 \times 8=$	$3 \times 8=$	$4 \times 8=$	$5 \times 8=$
$1 \times 9=$	$2 \times 9=$	$3 \times 9=$	$4 \times 9=$	$5 \times 9=$
$1 \times 10=$	$2 \times 10=$	$3 \times 10=$	$4 \times 10=$	$5 \times 10=$
$6 \times 1=$	$7 \times 1=$	$8 \times 1=$	$9 \times 1=$	$10 \times 1=$
$6 \times 2=$	$7 \times 2=$	$8 \times 2=$	$9 \times 2=$	$10 \times 2=$
$6 \times 3=$	$7 \times 3=$	$8 \times 3=$	$9 \times 3=$	$10 \times 3=$
$6 \times 4=$	$7 \times 4=$	$8 \times 4=$	$9 \times 4=$	$10 \times 4=$
$6 \times 5=$	$7 \times 5=$	$8 \times 5=$	$9 \times 5=$	$10 \times 5=$
$6 \times 6=$	$7 \times 6=$	$8 \times 6=$	$9 \times 6=$	$10 \times 6=$
$6 \times 7=$	$7 \times 7=$	$8 \times 7=$	$9 \times 7=$	$10 \times 7=$
$6 \times 8=$	$7 \times 8=$	$8 \times 8=$	$9 \times 8=$	$10 \times 8=$
$6 \times 9=$	$7 \times 9=$	$8 \times 9=$	$9 \times 9=$	$10 \times 9=$
$6 \times 10=$	$7 \times 10=$	$8 \times 10=$	$9 \times 10=$	$10 \times 10=$
$11 \times 1=$	$12 \times 1=$	$13 \times 1=$	$14 \times 1=$	$15 \times 1=$
$11 \times 2=$	$12 \times 2=$	$13 \times 2=$	$14 \times 2=$	$15 \times 2=$
$11 \times 3=$	$12 \times 3=$	$13 \times 3=$	$14 \times 3=$	$15 \times 3=$
$11 \times 4=$	$12 \times 4=$	$13 \times 4=$	$14 \times 4=$	$15 \times 4=$
$11 \times 5=$	$12 \times 5=$	$13 \times 5=$	$14 \times 5=$	$15 \times 5=$
$11 \times 6=$	$12 \times 6=$	$13 \times 6=$	$14 \times 6=$	$15 \times 6=$
$11 \times 7=$	$12 \times 7=$	$13 \times 7=$	$14 \times 7=$	$15 \times 7=$
$11 \times 8=$	$12 \times 8=$	$13 \times 8=$	$14 \times 8=$	$15 \times 8=$
$11 \times 9=$	$12 \times 9=$	$13 \times 9=$	$14 \times 9=$	$15 \times 9=$
$11 \times 10=$	$12 \times 10=$	$13 \times 10=$	$14 \times 10=$	$15 \times 10=$
$16 \times 1=$	$17 \times 1=$	$18 \times 1=$	$19 \times 1=$	$20 \times 1=$
$16 \times 2=$	$17 \times 2=$	$18 \times 2=$	$19 \times 2=$	$20 \times 2=$
$16 \times 3=$	$17 \times 3=$	$18 \times 3=$	$19 \times 3=$	$20 \times 3=$
$16 \times 4=$	$17 \times 4=$	$18 \times 4=$	$19 \times 4=$	$20 \times 4=$
$16 \times 5=$	$17 \times 5=$	$18 \times 5=$	$19 \times 5=$	$20 \times 5=$
$16 \times 6=$	$17 \times 6=$	$18 \times 6=$	$19 \times 6=$	$20 \times 6=$
$16 \times 7=$	$17 \times 7=$	$18 \times 7=$	$19 \times 7=$	$20 \times 7=$
$16 \times 8=$	$17 \times 8=$	$18 \times 8=$	$19 \times 8=$	$20 \times 8=$
$16 \times 9=$	$17 \times 9=$	$18 \times 9=$	$19 \times 9=$	$20 \times 9=$
$16 \times 10=$	$17 \times 10=$	$18 \times 10=$	$19 \times 10=$	$20 \times 10=$

$21 \times 1=$	$22 \times 1=$	$23 \times 1=$	$24 \times 1=$	$25 \times 1=$
$21 \times 2=$	$22 \times 2=$	$23 \times 2=$	$24 \times 2=$	$25 \times 2=$
$21 \times 3=$	$22 \times 3=$	$23 \times 3=$	$24 \times 3=$	$25 \times 3=$
$21 \times 4=$	$22 \times 4=$	$23 \times 4=$	$24 \times 4=$	$25 \times 4=$
$21 \times 5=$	$22 \times 5=$	$23 \times 5=$	$24 \times 5=$	$25 \times 5=$
$21 \times 6=$	$22 \times 6=$	$23 \times 6=$	$24 \times 6=$	$25 \times 6=$
$21 \times 7=$	$22 \times 7=$	$23 \times 7=$	$24 \times 7=$	$25 \times 7=$
$21 \times 8=$	$22 \times 8=$	$23 \times 8=$	$24 \times 8=$	$25 \times 8=$
$21 \times 9=$	$22 \times 9=$	$23 \times 9=$	$24 \times 9=$	$25 \times 9=$
$21 \times 10=$	$22 \times 10=$	$23 \times 10=$	$24 \times 10=$	$25 \times 10=$
$26 \times 1=$	$27 \times 1=$	$28 \times 1=$	$29 \times 1=$	$30 \times 1=$
$26 \times 2=$	$27 \times 2=$	$28 \times 2=$	$29 \times 2=$	$30 \times 2=$
$26 \times 3=$	$27 \times 3=$	$28 \times 3=$	$29 \times 3=$	$30 \times 3=$
$26 \times 4=$	$27 \times 4=$	$28 \times 4=$	$29 \times 4=$	$30 \times 4=$
$26 \times 5=$	$27 \times 5=$	$28 \times 5=$	$29 \times 5=$	$30 \times 5=$
$26 \times 6=$	$27 \times 6=$	$28 \times 6=$	$29 \times 6=$	$30 \times 6=$
$26 \times 7=$	$27 \times 7=$	$28 \times 7=$	$29 \times 7=$	$30 \times 7=$
$26 \times 8=$	$27 \times 8=$	$28 \times 8=$	$29 \times 8=$	$30 \times 8=$
$26 \times 9=$	$27 \times 9=$	$28 \times 9=$	$29 \times 9=$	$30 \times 9=$
$26 \times 10=$	$27 \times 10=$	$28 \times 10=$	$29 \times 10=$	$30 \times 10=$
$31 \times 1=$	$32 \times 1=$	$33 \times 1=$	$34 \times 1=$	$35 \times 1=$
$31 \times 2=$	$32 \times 2=$	$33 \times 2=$	$34 \times 2=$	$35 \times 2=$
$31 \times 3=$	$32 \times 3=$	$33 \times 3=$	$34 \times 3=$	$35 \times 3=$
$31 \times 4=$	$32 \times 4=$	$33 \times 4=$	$34 \times 4=$	$35 \times 4=$
$31 \times 5=$	$32 \times 5=$	$33 \times 5=$	$34 \times 5=$	$35 \times 5=$
$31 \times 6=$	$32 \times 6=$	$33 \times 6=$	$34 \times 6=$	$35 \times 6=$
$31 \times 7=$	$32 \times 7=$	$33 \times 7=$	$34 \times 7=$	$35 \times 7=$
$31 \times 8=$	$32 \times 8=$	$33 \times 8=$	$34 \times 8=$	$35 \times 8=$
$31 \times 9=$	$32 \times 9=$	$33 \times 9=$	$34 \times 9=$	$35 \times 9=$
$31 \times 10=$	$32 \times 10=$	$33 \times 10=$	$34 \times 10=$	$35 \times 10=$
$36 \times 1=$	$37 \times 1=$	$38 \times 1=$	$39 \times 1=$	$40 \times 1=$
$36 \times 2=$	$37 \times 2=$	$38 \times 2=$	$39 \times 2=$	$40 \times 2=$
$36 \times 3=$	$37 \times 3=$	$38 \times 3=$	$39 \times 3=$	$40 \times 3=$
$36 \times 4=$	$37 \times 4=$	$38 \times 4=$	$39 \times 4=$	$40 \times 4=$
$36 \times 5=$	$37 \times 5=$	$38 \times 5=$	$39 \times 5=$	$40 \times 5=$
$36 \times 6=$	$37 \times 6=$	$38 \times 6=$	$39 \times 6=$	$40 \times 6=$
$36 \times 7=$	$37 \times 7=$	$38 \times 7=$	$39 \times 7=$	$40 \times 7=$
$36 \times 8=$	$37 \times 8=$	$38 \times 8=$	$39 \times 8=$	$40 \times 8=$
$36 \times 9=$	$37 \times 9=$	$38 \times 9=$	$39 \times 9=$	$40 \times 9=$
$36 \times 10=$	$37 \times 10=$	$38 \times 10=$	$39 \times 10=$	$40 \times 10=$

$41 \times 1=$ $41 \times 2=$ $41 \times 3=$ $41 \times 4=$ $41 \times 5=$ $41 \times 6=$ $41 \times 7=$ $41 \times 8=$ $41 \times 9=$ $41 \times 10=$	$42 \times 1=$ $42 \times 2=$ $42 \times 3=$ $42 \times 4=$ $42 \times 5=$ $42 \times 6=$ $42 \times 7=$ $42 \times 8=$ $42 \times 9=$ $42 \times 10=$	$43 \times 1=$ $43 \times 2=$ $43 \times 3=$ $43 \times 4=$ $43 \times 5=$ $43 \times 6=$ $43 \times 7=$ $43 \times 8=$ $43 \times 9=$ $43 \times 10=$	$44 \times 1=$ $44 \times 2=$ $44 \times 3=$ $44 \times 4=$ $44 \times 5=$ $44 \times 6=$ $44 \times 7=$ $44 \times 8=$ $44 \times 9=$ $44 \times 10=$	$\begin{aligned} & 45 \times 1= \\ & 45 \times 2= \\ & 45 \times 3= \\ & 45 \times 4= \\ & 45 \times 5= \\ & 45 \times 6= \\ & 45 \times 7= \\ & 45 \times 8= \\ & 45 \times 9= \\ & 45 \times 10= \end{aligned}$
$46 \times 1=$ $46 \times 2=$ $46 \times 3=$ $46 \times 4=$ $46 \times 5=$ $46 \times 6=$ $46 \times 7=$ $46 \times 8=$ $46 \times 9=$ $46 \times 10=$	$47 \times 1=$ $47 \times 2=$ $47 \times 3=$ $47 \times 4=$ $47 \times 5=$ $47 \times 6=$ $47 \times 7=$ $47 \times 8=$ $47 \times 9=$ $47 \times 10=$	$48 \times 1=$ $48 \times 2=$ $48 \times 3=$ $48 \times 4=$ $48 \times 5=$ $48 \times 6=$ $48 \times 7=$ $48 \times 8=$ $48 \times 9=$ $48 \times 10=$	$49 \times 1=$ $49 \times 2=$ $49 \times 3=$ $49 \times 4=$ $49 \times 5=$ $49 \times 6=$ $49 \times 7=$ $49 \times 8=$ $49 \times 9=$ $49 \times 10=$	$\begin{aligned} & 50 \times 1= \\ & 50 \times 2= \\ & 50 \times 3= \\ & 50 \times 4= \\ & 50 \times 5= \\ & 50 \times 6= \\ & 50 \times 7= \\ & 50 \times 8= \\ & 50 \times 9= \\ & 50 \times 10= \end{aligned}$
$51 \times 1=$ $51 \times 2=$ $51 \times 3=$ $51 \times 4=$ $51 \times 5=$ $51 \times 6=$ $51 \times 7=$ $51 \times 8=$ $51 \times 9=$ $51 \times 10=$	$\begin{aligned} & 52 \times 1= \\ & 52 \times 2= \\ & 52 \times 3= \\ & 52 \times 4= \\ & 52 \times 5= \\ & 52 \times 6= \\ & 52 \times 7= \\ & 52 \times 8= \\ & 52 \times 9= \\ & 52 \times 10= \end{aligned}$	$53 \times 1=$ $53 \times 2=$ $53 \times 3=$ $53 \times 4=$ $53 \times 5=$ $53 \times 6=$ $53 \times 7=$ $53 \times 8=$ $53 \times 9=$ $53 \times 10=$	$54 \times 1=$ $54 \times 2=$ $54 \times 3=$ $54 \times 4=$ $54 \times 5=$ $54 \times 6=$ $54 \times 7=$ $54 \times 8=$ $54 \times 9=$ $54 \times 10=$	$\begin{aligned} & 55 \times 1= \\ & 55 \times 2= \\ & 55 \times 3= \\ & 55 \times 4= \\ & 55 \times 5= \\ & 55 \times 6= \\ & 55 \times 7= \\ & 55 \times 8= \\ & 55 \times 9= \\ & 55 \times 10= \end{aligned}$
$56 \times 1=$ $56 \times 2=$ $56 \times 3=$ $56 \times 4=$ $56 \times 5=$ $56 \times 6=$ $56 \times 7=$ $56 \times 8=$ $56 \times 9=$ $56 \times 10=$	$57 \times 1=$ $57 \times 2=$ $57 \times 3=$ $57 \times 4=$ $57 \times 5=$ $57 \times 6=$ $57 \times 7=$ $57 \times 8=$ $57 \times 9=$ $57 \times 10=$	$58 \times 1=$ $58 \times 2=$ $58 \times 3=$ $58 \times 4=$ $58 \times 5=$ $58 \times 6=$ $58 \times 7=$ $58 \times 8=$ $58 \times 9=$ $58 \times 10=$	$59 \times 1=$ $59 \times 2=$ $59 \times 3=$ $59 \times 4=$ $59 \times 5=$ $59 \times 6=$ $59 \times 7=$ $59 \times 8=$ $59 \times 9=$ $59 \times 10=$	$60 \times 1=$ $60 \times 2=$ $60 \times 3=$ $60 \times 4=$ $60 \times 5=$ $60 \times 6=$ $60 \times 7=$ $60 \times 8=$ $60 \times 9=$ $60 \times 10=$

$\begin{aligned} & 61 \times 1= \\ & 61 \times 2= \\ & 61 \times 3= \\ & 61 \times 4= \\ & 61 \times 5= \\ & 61 \times 6= \\ & 61 \times 7= \\ & 61 \times 8= \\ & 61 \times 9= \\ & 61 \times 10= \end{aligned}$	$62 \times 1=$ $62 \times 2=$ $62 \times 3=$ $62 \times 4=$ $62 \times 5=$ $62 \times 6=$ $62 \times 7=$ $62 \times 8=$ $62 \times 9=$ $62 \times 10=$	$63 \times 1=$ $63 \times 2=$ $63 \times 3=$ $63 \times 4=$ $63 \times 5=$ $63 \times 6=$ $63 \times 7=$ $63 \times 8=$ $63 \times 9=$ $63 \times 10=$	$64 \times 1=$ $64 \times 2=$ $64 \times 3=$ $64 \times 4=$ $64 \times 5=$ $64 \times 6=$ $64 \times 7=$ $64 \times 8=$ $64 \times 9=$ $64 \times 10=$	$\begin{aligned} & 65 \times 1= \\ & 65 \times 2= \\ & 65 \times 3= \\ & 65 \times 4= \\ & 65 \times 5= \\ & 65 \times 6= \\ & 65 \times 7= \\ & 65 \times 8= \\ & 65 \times 9= \\ & 65 \times 10= \end{aligned}$
$\begin{aligned} & 66 \times 1= \\ & 66 \times 2= \\ & 66 \times 3= \\ & 66 \times 4= \\ & 66 \times 5= \\ & 66 \times 6= \\ & 66 \times 7= \\ & 66 \times 8= \\ & 66 \times 9= \\ & 66 \times 10= \end{aligned}$	$67 \times 1=$ $67 \times 2=$ $67 \times 3=$ $67 \times 4=$ $67 \times 5=$ $67 \times 6=$ $67 \times 7=$ $67 \times 8=$ $67 \times 9=$ $67 \times 10=$	$68 \times 1=$ $68 \times 2=$ $68 \times 3=$ $68 \times 4=$ $68 \times 5=$ $68 \times 6=$ $68 \times 7=$ $68 \times 8=$ $68 \times 9=$ $68 \times 10=$	$69 \times 1=$ $69 \times 2=$ $69 \times 3=$ $69 \times 4=$ $69 \times 5=$ $69 \times 6=$ $69 \times 7=$ $69 \times 8=$ $69 \times 9=$ $69 \times 10=$	$\begin{aligned} & 70 \times 1= \\ & 70 \times 2= \\ & 70 \times 3= \\ & 70 \times 4= \\ & 70 \times 5= \\ & 70 \times 6= \\ & 70 \times 7= \\ & 70 \times 8= \\ & 70 \times 9= \\ & 70 \times 10= \end{aligned}$
$71 \times 1=$ $71 \times 2=$ $71 \times 3=$ $71 \times 4=$ $71 \times 5=$ $71 \times 6=$ $71 \times 7=$ $71 \times 8=$ $71 \times 9=$ $71 \times 10=$	$72 \times 1=$ $72 \times 2=$ $72 \times 3=$ $72 \times 4=$ $72 \times 5=$ $72 \times 6=$ $72 \times 7=$ $72 \times 8=$ $72 \times 9=$ $72 \times 10=$	$\begin{aligned} & 73 \times 1= \\ & 73 \times 2= \\ & 73 \times 3= \\ & 73 \times 4= \\ & 73 \times 5= \\ & 73 \times 6= \\ & 73 \times 7= \\ & 73 \times 8= \\ & 73 \times 9= \\ & 73 \times 10= \end{aligned}$	$74 \times 1=$ $74 \times 2=$ $74 \times 3=$ $74 \times 4=$ $74 \times 5=$ $74 \times 6=$ $74 \times 7=$ $74 \times 8=$ $74 \times 9=$ $74 \times 10=$	$\begin{aligned} & 75 \times 1= \\ & 75 \times 2= \\ & 75 \times 3= \\ & 75 \times 4= \\ & 75 \times 5= \\ & 75 \times 6= \\ & 75 \times 7= \\ & 75 \times 8= \\ & 75 \times 9= \\ & 75 \times 10= \end{aligned}$
$\begin{aligned} & 76 \times 1= \\ & 76 \times 2= \\ & 76 \times 3= \\ & 76 \times 4= \\ & 76 \times 5= \\ & 76 \times 6= \\ & 76 \times 7= \\ & 76 \times 8= \\ & 76 \times 9= \\ & 76 \times 10= \end{aligned}$	$77 \times 1=$ $77 \times 2=$ $77 \times 3=$ $77 \times 4=$ $77 \times 5=$ $77 \times 6=$ $77 \times 7=$ $77 \times 8=$ $77 \times 9=$ $77 \times 10=$	$\begin{aligned} & 78 \times 1= \\ & 78 \times 2= \\ & 78 \times 3= \\ & 78 \times 4= \\ & 78 \times 5= \\ & 78 \times 6= \\ & 78 \times 7= \\ & 78 \times 8= \\ & 78 \times 9= \\ & 78 \times 10= \end{aligned}$	$\begin{aligned} & 79 \times 1= \\ & 79 \times 2= \\ & 79 \times 3= \\ & 79 \times 4= \\ & 79 \times 5= \\ & 79 \times 6= \\ & 79 \times 7= \\ & 79 \times 8= \\ & 79 \times 9= \\ & 79 \times 10= \end{aligned}$	$\begin{aligned} & 80 \times 1= \\ & 80 \times 2= \\ & 80 \times 3= \\ & 80 \times 4= \\ & 80 \times 5= \\ & 80 \times 6= \\ & 80 \times 7= \\ & 80 \times 8= \\ & 80 \times 9= \\ & 80 \times 10= \end{aligned}$

$\begin{aligned} & 81 \times 1= \\ & 81 \times 2= \\ & 81 \times 3= \\ & 81 \times 4= \\ & 81 \times 5= \\ & 81 \times 6= \\ & 81 \times 7= \\ & 81 \times 8= \\ & 81 \times 9= \\ & 81 \times 10= \end{aligned}$	$82 \times 1=$ $82 \times 2=$ $82 \times 3=$ $82 \times 4=$ $82 \times 5=$ $82 \times 6=$ $82 \times 7=$ $82 \times 8=$ $82 \times 9=$ $82 \times 10=$	$\begin{aligned} & 83 \times 1= \\ & 83 \times 2= \\ & 83 \times 3= \\ & 83 \times 4= \\ & 83 \times 5= \\ & 83 \times 6= \\ & 83 \times 7= \\ & 83 \times 8= \\ & 83 \times 9= \\ & 83 \times 10= \end{aligned}$	$\begin{aligned} & 84 \times 1= \\ & 84 \times 2= \\ & 84 \times 3= \\ & 84 \times 4= \\ & 84 \times 5= \\ & 84 \times 6= \\ & 84 \times 7= \\ & 84 \times 8= \\ & 84 \times 9= \\ & 84 \times 10= \end{aligned}$	$\begin{aligned} & 85 \times 1= \\ & 85 \times 2= \\ & 85 \times 3= \\ & 85 \times 4= \\ & 85 \times 5= \\ & 85 \times 6= \\ & 85 \times 7= \\ & 85 \times 8= \\ & 85 \times 9= \\ & 85 \times 10= \end{aligned}$
$\begin{aligned} & 86 \times 1= \\ & 86 \times 2= \\ & 86 \times 3= \\ & 86 \times 4= \\ & 86 \times 5= \\ & 86 \times 6= \\ & 86 \times 7= \\ & 86 \times 8= \\ & 86 \times 9= \\ & 86 \times 10= \end{aligned}$	$87 \times 1=$ $87 \times 2=$ $87 \times 3=$ $87 \times 4=$ $87 \times 5=$ $87 \times 6=$ $87 \times 7=$ $87 \times 8=$ $87 \times 9=$ $87 \times 10=$	$\begin{aligned} & 88 \times 1= \\ & 88 \times 2= \\ & 88 \times 3= \\ & 88 \times 4= \\ & 88 \times 5= \\ & 88 \times 6= \\ & 88 \times 7= \\ & 88 \times 8= \\ & 88 \times 9= \\ & 88 \times 10= \end{aligned}$	$\begin{aligned} & 89 \times 1= \\ & 89 \times 2= \\ & 89 \times 3= \\ & 89 \times 4= \\ & 89 \times 5= \\ & 89 \times 6= \\ & 89 \times 7= \\ & 89 \times 8= \\ & 89 \times 9= \\ & 89 \times 10= \end{aligned}$	$\begin{aligned} & 90 \times 1= \\ & 90 \times 2= \\ & 90 \times 3= \\ & 90 \times 4= \\ & 90 \times 5= \\ & 90 \times 6= \\ & 90 \times 7= \\ & 90 \times 8= \\ & 90 \times 9= \\ & 90 \times 10= \end{aligned}$
$\begin{aligned} & 91 \times 1= \\ & 91 \times 2= \\ & 91 \times 3= \\ & 91 \times 4= \\ & 91 \times 5= \\ & 91 \times 6= \\ & 91 \times 7= \\ & 91 \times 8= \\ & 91 \times 9= \\ & 91 \times 10= \end{aligned}$	$92 \times 1=$ $92 \times 2=$ $92 \times 3=$ $92 \times 4=$ $92 \times 5=$ $92 \times 6=$ $92 \times 7=$ $92 \times 8=$ $92 \times 9=$ $92 \times 10=$	$\begin{aligned} & 93 \times 1= \\ & 93 \times 2= \\ & 93 \times 3= \\ & 93 \times 4= \\ & 93 \times 5= \\ & 93 \times 6= \\ & 93 \times 7= \\ & 93 \times 8= \\ & 93 \times 9= \\ & 93 \times 10= \end{aligned}$	$\begin{aligned} & 94 \times 1= \\ & 94 \times 2= \\ & 94 \times 3= \\ & 94 \times 4= \\ & 94 \times 5= \\ & 94 \times 6= \\ & 94 \times 7= \\ & 94 \times 8= \\ & 94 \times 9= \\ & 94 \times 10= \end{aligned}$	$\begin{aligned} & 95 \times 1= \\ & 95 \times 2= \\ & 95 \times 3= \\ & 95 \times 4= \\ & 95 \times 5= \\ & 95 \times 6= \\ & 95 \times 7= \\ & 95 \times 8= \\ & 95 \times 9= \\ & 95 \times 10= \end{aligned}$
$\begin{aligned} & 96 \times 1= \\ & 96 \times 2= \\ & 96 \times 3= \\ & 96 \times 4= \\ & 96 \times 5= \\ & 96 \times 6= \\ & 96 \times 7= \\ & 96 \times 8= \\ & 96 \times 9= \\ & 96 \times 10= \end{aligned}$	$97 \times 1=$ $97 \times 2=$ $97 \times 3=$ $97 \times 4=$ $97 \times 5=$ $97 \times 6=$ $97 \times 7=$ $97 \times 8=$ $97 \times 9=$ $97 \times 10=$	$\begin{aligned} & 98 \times 1= \\ & 98 \times 2= \\ & 98 \times 3= \\ & 98 \times 4= \\ & 98 \times 5= \\ & 98 \times 6= \\ & 98 \times 7= \\ & 98 \times 8= \\ & 98 \times 9= \\ & 98 \times 10= \end{aligned}$	$\begin{aligned} & 99 \times 1= \\ & 99 \times 2= \\ & 99 \times 3= \\ & 99 \times 4= \\ & 99 \times 5= \\ & 99 \times 6= \\ & 99 \times 7= \\ & 99 \times 8= \\ & 99 \times 9= \\ & 99 \times 10= \end{aligned}$	$\begin{aligned} & 100 \times 1= \\ & 100 \times 2= \\ & 100 \times 3= \\ & 100 \times 4= \\ & 100 \times 5= \\ & 100 \times 6= \\ & 100 \times 7= \\ & 100 \times 8= \\ & 100 \times 9= \\ & 100 \times 10= \end{aligned}$

$1 \times 1=1$
$1 \times 2=2$
$1 \times 3=3$
$1 \times 4=4$
$1 \times 5=5$
$1 \times 6=6$
$1 \times 7=7$
$1 \times 8=8$
$1 \times 9=9$
$1 \times 10=10$
$4321 \times 1=4321$
$4321 \times 2=8642$
$4321 \times 3=12963$
$4321 \times 4=17284$
$4321 \times 5=21605$
$4321 \times 6=25926$
$4321 \times 7=30247$
$4321 \times 8=34568$
$4321 \times 9=38889$
$4321 \times 10=43210$
$7654321 \times 1=7654321$
$7654321 \times 2=15308642$
$7654321 \times 3=22962963$
$7654321 \times 4=30617284$
$7654321 \times 5=38271605$
$7654321 \times 6=45924926$
$7654321 \times 7=53580247$
$7654321 \times 8=61234568$
$7654321 \times 9=68888889$
$7654321 \times 10=76543210$
$21 \times 1=21$
$21 \times 2=42$
$21 \times 3=63$
$21 \times 4=84$
$21 \times 5=105$
$21 \times 6=126$
$21 \times 7=147$
$21 \times 8=168$
$21 \times 9=189$
$21 \times 10=210$
$54321 \times 1=54321$
$54321 \times 2=108642$
$54321 \times 3=162963$
$54321 \times 4=217284$
$54321 \times 5=271605$
$54321 \times 6=325926$
$54321 \times 7=380247$
$54321 \times 8=434568$
$54321 \times 9=488889$
$54321 \times 10=543210$

$87654321 \times 1=87654321$	$987654321 \times 1=987654321$
$87654321 \times 2=175308642$	$987654321 \times 2=1975308642$
$87654321 \times 3=262962963$	$987654321 \times 3=2962962963$
$87654321 \times 4=250617284$	$987654321 \times 4=3950617284$
$87654321 \times 5=438271605$	$987654321 \times 5=4938271604$
$87654321 \times 6=525925926$	$987654321 \times 6=5925925926$
$87654321 \times 7=613580247$	$987654321 \times 7=6913580247$
$87654321 \times 8=701234568$	$987654321 \times 8=7901234568$
$87654321 \times 9=788888889$	$987654321 \times 9=8888888889$
$87654321 \times 10=876543210$	$987654321 \times 10=9876543210$

$9 \times 1=9$	$89 \times 1=89$	$789 \times 1=789$
$9 \times 2=18$	$89 \times 2=178$	$789 \times 2=1578$
$9 \times 3=27$	$89 \times 3=267$	$789 \times 3=2367$
$9 \times 4=36$	$89 \times 4=356$	$789 \times 4=3156$
$9 \times 5=45$	$89 \times 5=445$	$789 \times 5=3945$
$9 \times 6=54$	$89 \times 6=534$	$789 \times 6=4734$
$9 \times 7=63$	$89 \times 7=623$	$789 \times 7=5523$
$9 \times 8=72$	$89 \times 8=712$	$789 \times 8=6312$
$9 \times 9=81$	$89 \times 9=801$	$789 \times 9=7101$
$9 \times 10=90$	$89 \times 10=890$	$789 \times 10=7890$
$6789 \times 1=6789$	$56789 \times 1=56789$	$456789 \times 1=456789$
$6789 \times 2=13578$	$56789 \times 2=113578$	$456789 \times 2=913578$
$6789 \times 3=20367$	$56789 \times 3=170367$	$456789 \times 3=1370367$
$6789 \times 4=27156$	$56789 \times 4=227156$	$456789 \times 4=1827156$
$6789 \times 5=33945$	$56789 \times 5=283945$	$456789 \times 5=2283945$
$6789 \times 6=40734$	$56789 \times 6=340734$	$456789 \times 6=2740734$
$6789 \times 7=47523$	$56789 \times 7=397523$	$456789 \times 7=3197523$
$6789 \times 8=54312$	$56789 \times 8=454312$	$456789 \times 8=3654312$
$6789 \times 9=61101$	$56789 \times 9=511101$	$456789 \times 9=4111101$
$6789 \times 10=67890$	$56789 \times 10=567890$	$456789 \times 10=4567890$
$3456789 \times 1=3456789$	$23456789 \times 1=23456789$	$123456789 \times 1=123456789$
$3456789 \times 2=6913578$	$23456789 \times 2=46913578$	$123456789 \times 2=246913578$
$3456789 \times 3=10370367$	$23456789 \times 3=70370367$	$123456789 \times 3=370370367$
$3456789 \times 4=13827156$	$23456789 \times 4=93827156$	$123456789 \times 4=493827156$
$3456789 \times 5=17283945$	$23456789 \times 5=117283945$	$123456789 \times 5=617283945$
$3456789 \times 6=20740734$	$23456789 \times 6=140740734$	$123456789 \times 6=740740734$
$3456789 \times 7=24197523$	$23456789 \times 7=164197523$	$123456789 \times 7=864197523$
$3456789 \times 8=27654312$	$23456789 \times 8=187654312$	$123456789 \times 8=987654312$
$3456789 \times 9=31111101$	$23456789 \times 9=211111101$	$123456789 \times 9=1111111101$
$3456789 \times 10=34567890$	$23456789 \times 10=234567890$	$123456789 \times 10=1234567890$

ANNEXURE - 8
PRACTICE FORMAT:TIMES TABLES SAMPLE UPTO NINE DIGITS
$1 \times 1=$
$1 \times 2=$
$1 \times 3=$
$1 \times 4=$
$1 \times 5=$
$1 \times 6=$
$1 \times 7=$
$1 \times 8=$
$1 \times 9=$
$1 \times 10=$
$4321 \times 1=$
$4321 \times 2=$
$4321 \times 3=$
$4321 \times 4=$
$4321 \times 5=$
$4321 \times 6=$
$4321 \times 7=$
$4321 \times 8=$
$4321 \times 9=$
$4321 \times 10=$
$21 \times 1=$
$21 \times 2=$
$21 \times 3=$
$21 \times 4=$
$21 \times 5=$
$21 \times 6=$
$21 \times 7=$
$21 \times 8=$
$21 \times 9=$
$21 \times 10=$
$54321 \times 1=$
$54321 \times 2=$
$54321 \times 3=$
$54321 \times 4=$
$54321 \times 5=$
$54321 \times 6=$
$54321 \times 7=$
$54321 \times 8=$
$54321 \times 9=$
$54321 \times 10=$
$321 \times 1=$
$321 \times 2=$
$321 \times 3=$
$321 \times 4=$
$321 \times 5=$
$321 \times 6=$
$321 \times 7=$
$321 \times 8=$
$321 \times 9=$
$321 \times 10=$
$654321 \times 1=$
$654321 \times 2=$
$654321 \times 3=$
$654321 \times 4=$
$654321 \times 5=$
$654321 \times 6=$
$654321 \times 7=$
$654321 \times 8=$
$654321 \times 9=$
$654321 \times 10=$
$7654321 \times 1=$
$7654321 \times 2=$
$7654321 \times 3=$
$7654321 \times 4=$
$7654321 \times 5=$
$7654321 \times 6=$
$7654321 \times 7=$
$7654321 \times 8=$
$7654321 \times 9=$
$7654321 \times 10=$
$87654321 \times 1=$
$87654321 \times 2=$
$87654321 \times 3=$
$87654321 \times 4=$
$87654321 \times 5=$
$87654321 \times 6=$
$87654321 \times 7=$
$87654321 \times 8=$
$87654321 \times 9=$
$87654321 \times 10=$
$9 \times 1=$
$9 \times 2=$
$9 \times 3=$
$9 \times 4=$
$9 \times 5=$
$9 \times 6=$
$9 \times 7=$
$9 \times 8=$
$9 \times 9=$
$9 \times 10=$
$6789 \times 1=$
$6789 \times 2=$
$6789 \times 3=$
$6789 \times 4=$
$6789 \times 5=$
$6789 \times 6=$
$6789 \times 7=$
$6789 \times 8=$
$6789 \times 9=$
$6789 \times 10=$
$89 \times 1=$
$89 \times 2=$
$89 \times 3=$
$89 \times 4=$
$89 \times 5=$
$89 \times 6=$
$89 \times 7=$
$89 \times 8=$
$89 \times 9=$
$89 \times 10=$
$56789 \times 1=$
$56789 \times 2=$
$56789 \times 3=$
$56789 \times 4=$
$56789 \times 5=$
$56789 \times 6=$
$56789 \times 7=$
$56789 \times 8=$
$56789 \times 9=$
$56789 \times 10=$
$789 \times 1=$
$789 \times 2=$
$789 \times 3=$
$789 \times 4=$
$789 \times 5=$
$789 \times 6=$
$789 \times 7=$
$789 \times 8=$
$789 \times 9=$
$789 \times 10=$
$456789 \times 1=$
$456789 \times 2=$
$456789 \times 3=$
$456789 \times 4=$
$456789 \times 5=$
$456789 \times 6=$
$456789 \times 7=$
$456789 \times 8=$
$456789 \times 9=$
$456789 \times 10=$

$3456789 \times 1=$	$23456789 \times 1=$
$3456789 \times 2=$	$23456789 \times 2=$
$3456789 \times 3=$	$23456789 \times 3=$
$3456789 \times 4=$	$23456789 \times 4=$
$3456789 \times 5=$	$23456789 \times 5=$
$3456789 \times 6=$	$23456789 \times 6=$
$3456789 \times 7=$	$23456789 \times 7=$
$3456789 \times 8=$	$23456789 \times 8=$
$3456789 \times 9=$	$23456789 \times 10=$

$123456789 \times 1=$ $123456789 \times 2=$ $123456789 \times 3=$ $123456789 \times 4=$ $123456789 \times 5=$ $123456789 \times 6=$ $123456789 \times 7=$ $123456789 \times 8=$ $123456789 \times 9=$ $123456789 \times 10=$

ANNEXURE - 9

PRACTICE FORMAT: MULTIPLICATION
(i) FIRST METHOD.
c) Multiply 456 by 23
Sol:- 456
x 23
d) Multiply 789 by 4
Sol: 789
x4
\therefore the product $=$
g) Multiply 67 by 9

Soln. 67
x9
\therefore the product $=$
i) Multiply 567 by 67

Sol:- 567
$\begin{array}{r}567 \\ \hline\end{array}$
\therefore the product $=$
o) Multiply 678 by 789

Sol:
678
$\begin{array}{r}\times 789 \\ \hline\end{array}$
p) Multiply 876 by 987 .

Sol: 876
$\begin{array}{r} \\ \times 987 \\ \hline\end{array}$
\therefore the product=
\therefore the product $=$
(ii) SECOND METHOD.
(a) Multiply 789 by 468.

Sol: 789 $\begin{array}{r}\times 468 \\ \hline\end{array}$
Product =
(c) Multiply 6789 by 4876 .

$$
\text { Sol: } 6789
$$

$$
\times 4876
$$

Product =
(b) Multiply 789 by 975

Sol: 789 $\begin{array}{r}\times 975 \\ \hline\end{array}$
Product =
(d) Multiply 6789 by 9753 .

Sol: 6789
$\begin{array}{r}\times 9753 \\ \hline\end{array}$
\qquad

Product $=$
(e) Multiply 456789 by 4876 .

Sol: 456789
$\begin{array}{r}\mathrm{X} 4876 \\ \hline\end{array}$
(f) Multiply 456789 by 9753. Sol: 456789
$\begin{array}{r}\times 9753 \\ \hline\end{array}$

Product $=$

PRACTICE FORMAT: COLUMN METHOD OF SUBTRACTION
(a) 17
16
25
34
$\begin{array}{r}-\quad 9 \\ \hline\end{array}$
-8
-7
-6

(b) | 12 |
| ---: |
| $-\quad 3$ |
| |
| $-\quad 6$ |
| |
| (c) $\begin{array}{r}345 \\ -\quad 89 \\ \hline\end{array}$ |

$\begin{array}{r}38 \\ -\quad 9 \\ \hline\end{array}$
$\begin{array}{r}43 \\ -\quad 5 \\ \hline\end{array}$
$\begin{array}{r}26 \\ -\quad 8 \\ \hline\end{array}$
456
43
32
24

-7

-6
(d) $\begin{array}{r}432 \\ -253\end{array}$
456
356
678
-253
-158

-187

$-\quad 289$

(e) 6786
$\begin{array}{r}2342 \\ -\quad 678 \\ \hline\end{array}$

6328	6788
-1439	-3789

(f) $\begin{array}{r}6543 \\ -3456\end{array}$
7823
9876
4321
$\begin{array}{r}-3456 \\ \hline\end{array}$
$\begin{array}{r}-5934 \\ \hline\end{array}$

$-6879 \quad-1234$

PRACTICE FORMAT: HORIZONTAL METHOD SUBTRACTION

HORIZONTAL METHOD OF SUBTRACTION

(a) $31-6-6=$
)
(b) $42-6-7=$
(c) 21-7-7= (
(d) $43-7-8=($
(e) $54-8-8=\quad$ (
(f) $64-8-9=$
(g) $41-8-8-9=$
(h) $51-8-8-8-8=$
(i) $60-8-8-9-9=$
(j) $82-9-9-9-9-9=$
(k) $81-9-9-9-9-9-9-9=$
(I) $91-9-9-9-9-9-9-9-9=$
(m) $85-9-9-9-9-9-9-9-9-9=$
(n) $52-6-6-6-6=$ (
(o) $78-7-7-7-7-7=$
(p) $63-6-7-8-9=1$
(q) $45-39=$
(r) $87-58=$
(s) $687-498=$
(t) $78-37-29=1$
(u) $956-389-478=$
(v) $987-498-389=$
(w) $789-267-397=$
(x) $978-267-378-289=$
(y) $3765-987-798-798=$
(z) $4235-789-879-979=$

ANNEXURE - 12
 PRACTICE FORMAT: DIVISION

a) Divide 345 by 2 .

Sol: 2) 345 (

Quotient =
Remainder $=$
c) Divide 567 by 4 .

Sol; 4) 567 (
b) Divide 567 by 3 . Sol; 3) 567 (

Quotient =
Remainder $=$
d) Divide 567 by 5 .

Sol: 5) 567 (

> Quotient $=$
> Remainder $=$
e) Divide 567 by 6 .

Sol:6) 567 (

Quotient =
Remainder $=$
g) Divide 267 by 9

Sol:- 9) 267 (
\therefore Quotient=
and remainder $=$
i) Divide 3456 by 17 .

Sol; 17) 3456 (

Quotient = Remainder=
h) Divide 567 by 8

Sol:- 8) 567 (
k) Divide 3456 by 29 .

Sol: 29) 3456 (

Quotient $=$
Reminder $=$

Quotient = Remainder $=$
f) Divide 567 by 7 . Sol; 7) 567 (
s) Divide 5678 by 97 .

Sol; 97) 5678 (

Quotient =
Remainder $=$
y) Divide 987654321 by 789 .

Sol: 789) 987654321 (
t) Divide 123456 by 78 .

Sol: 78) 123456 (

Quotient $=$
Remainder $=$
z) Divide 123456789 by 987 .

Sol: 987) 123456789 (

Quotient =
Remainder $=$
Quotient $=\quad$ Remainder $=$
Note; Divide 9876543210 by 789 .
Sol : 789) 9876543210 (

FORMAT FOR IDENTIFICATION OF PRIME NUMBERS BETWEEN 1 AND 100

NUMBERS	FACTORS	NUMBER OF FACTORS	NUMBERS	FACTORS	NUMBER OF FACTORS
1			26.		
2			27.		
3			28.		
4			29.		
5			30.		
6			31.		
7			32.		
8			33.		
9			34.		
10			35.		
11			36.		
12			37.		
13			38.		
14			39.		
15			40.		
16			41.		
17			42.		
18			43.		
19			44.		
20			45.		
21			46.		
22			47.		
23			48.		
24			49.		
25			50.		

numbers	FACTORS	NUMBER OF FACTORS	numbers	FACTORS	NUMBER OF FACTORS
51			76.		
52			77.		
53			78.		
54			79.		
55			80.		
56			81.		
57			82.		
58			83.		
59			84.		
60			85.		
61			86.		
62			87.		
63			88.		
64			89.		
65			90.		
66			91.		
67			92.		
68			93.		
69			94.		
70			95.		
71			96.		
72			97.		
73			98.		
74			99.		
75			100.		

Prime numbers have exactly two factors. So, they are:
\qquad
\qquad

The number of prime numbers between 1 and 100 is

